Afficher la notice abrégée

dc.contributor.authorMoral García, Serafín 
dc.contributor.authorAbellán Mulero, Joaquín 
dc.date.accessioned2024-10-24T07:30:04Z
dc.date.available2024-10-24T07:30:04Z
dc.date.issued2023-06-08
dc.identifier.citationS. Moral-García and J. Abellán, "Improving the Results in Credit Scoring by Increasing Diversity in Ensembles of Classifiers," in IEEE Access, vol. 11, pp. 58451-58461, 2023, doi: 10.1109/ACCESS.2023.3284137es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96312
dc.description.abstractThe ensembles of classifiers are techniques that have obtained excellent results in the credit scoring domain. It is known that Decision Trees (DTs) are suitable for ensembles because they encourage diversity, the key point for the success of an ensemble scheme. Ensembles of DTs have obtained good performance in a wide range of areas, including credit scoring. Some works have highlighted that DTs that employ imprecise probability models, called Credal Decision Trees (CDTs), improve the results of ensembles in credit scoring. The performance of CDT is strongly influenced by a hyperparameter. In fact, it was shown that different values of the hyperparameter might yield different models. Hence, the diversity in ensemble schemes can be increased by randomly selecting the value of the hyperparameter in each CDT, instead of fixing one. In this work, it is shown that increasing the diversity of the ensembles that use CDT by varying the value of the hyperparameter in each base classifier improves the results in credit scoring. Thereby, the use of CDT randomly selecting the value of the hyperparameterwould suppose notable economic benefits for banks and financial institutions. Few gains in accuracy might imply huge gains in economic benefits.es_ES
dc.description.sponsorshipUGR-Fondo Europeo de Desarrollo Regional (FEDER) Funds under Project A-TIC-344-UGR20es_ES
dc.description.sponsorship‘‘FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades’’ under Project P20_00159es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCredit scoringes_ES
dc.subjectEnsemble schemeses_ES
dc.subjectDiversityes_ES
dc.titleImproving the Results in Credit Scoring by Increasing Diversity in Ensembles of Classifierses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ACCESS.2023.3284137
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional