Afficher la notice abrégée

dc.contributor.authorTitos Luzón, Manuel Marcelino 
dc.contributor.authorCarthy, Joe
dc.contributor.authorGarcía Martínez, María Luz 
dc.contributor.authorBarnie, Talfan
dc.contributor.authorBenítez Ortúzar, María Del Carmen 
dc.date.accessioned2024-10-18T15:10:54Z
dc.date.available2024-10-18T15:10:54Z
dc.date.issued2024-07-02
dc.identifier.citationM. Titos, J. Carthy, L. García, T. Barnie and C. Benítez, "Dilated-RNNs: A Deep Approach for Continuous Volcano-Seismic Events Recognition," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 11857-11865, 2024, doi: 10.1109/JSTARS.2024.3421921es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96104
dc.description.abstractMonitoring continuous volcano-seismic signals is often performed by systems trained on scarce or incomplete datasets. From a machine learning perspective, these types of systems are typically built by learning from seismic records containing information not only on the volcanic dynamics, but also on the complex inner structure of the volcanic edifice. The dual nature of the information content presents a challengewhen it comes to modeling events temporally. Here, we show that while existing recurrent-neural-network-based monitoring systems recognize almost 90% of events annotated in seismic catalogs, the long-range temporal dependencies are still hard to model. We found that dilated recurrent neural networks based on multiresolution dilated recurrent skip connections between layers have the remarkable capability to simultaneously enhance the efficiency of the model, reducing the number of training parameters, while increasing the performance of the model when compared with classical recurrent neural networks in sequencemodeling tasks involving very long-term seismic records. Our results offer the potential to increase the reliability of monitoring tools despite the variations in the geophysical properties of the seismic events within the volcano across eruptive periods.es_ES
dc.description.sponsorshipIMPROVE under GrantH2020-MSCA-ITN-2019-85809es_ES
dc.description.sponsorshipSpanish Project PID2022-143083NB-100 funded by MCIN/AEI/10.13039/501100011033 and FEDER (EU) “Una manera de hacer Europa”es_ES
dc.description.sponsorshipSpanish Project PLEC2022-009271 “DigiVolCan,” funded byMCIN/AEI/10.13039/501100011033 and EU NextGenerationEU/PRTRes_ES
dc.description.sponsorshipSpanish Grant TED2021-132178BI00 funded by MCIN/AEI/10.13039/501100011033 and “European Union NextGenerationEU/PRTR”es_ES
dc.description.sponsorshipJunta de Andalucía-Consejería de Universidad, Investigacion e Innovacion under Grant P21_00051es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDeep learninges_ES
dc.subjectDilated recurrent neural networks (Dilated-RNNs)es_ES
dc.subjectTransfer learning (TL)es_ES
dc.titleDilated-RNNs: A Deep Approach for Continuous Volcano-Seismic Events Recognitiones_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/NextGenerationEU/009271es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/NextGenerationEU/132178BI00es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/JSTARS.2024.3421921
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional