Mostrar el registro sencillo del ítem

dc.contributor.authorAdamuz Hinojosa, Óscar Ramón 
dc.contributor.authorAmeigeiras Gutiérrez, Pablo José 
dc.contributor.authorMuñoz Luengo, Pablo 
dc.contributor.authorLópez Soler, Juan Manuel 
dc.date.accessioned2024-10-18T15:09:52Z
dc.date.available2024-10-18T15:09:52Z
dc.date.issued2024-03-13
dc.identifier.citationO. Adamuz-Hinojosa, P. Ameigeiras, P. Muñoz and J. M. Lopez-Soler, "Computationally Efficient UE Blocking Probability Model for GBR Services in Beyond 5G RAN," in IEEE Access, vol. 12, pp. 39270-39284, 2024, doi: 10.1109/ACCESS.2024.3377112es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96102
dc.description.abstractModeling the probability of blocking User Equipment (UE) sessions within a cell is a crucial aspect within the management of 5G services with Guaranteed Bit Rate (GBR) requirements, especially in the process of planning in advance the deployment of such services. The complexity of modeling the UE blocking probability arises from the dependency of this performance indicator on multiple factors, including the UE channel quality within the cell, the MAC scheduling discipline, the statistical distributions of the traffic demand and session duration, and the GBR requirements of the corresponding service. In this vein, we propose an analytical model to assess the UE blocking probability for a GBR service. The proposed model is based on a Markov chain which is insensitive to the holding time distribution of the UE data sessions. Furthermore, it may consider as input any continuous distribution for the average Signal-to-Interference-plus-Noise Ratio (SINR) within the cell. The simulation results demonstrate the execution time of the proposed model is on the order of tens of milliseconds, which makes it suitable for testing multiple network configurations in a short term, training ML models or detecting traffic anomalies in real time. Additionally, the results show that our model exhibits an estimation error for the UE blocking probability below 2.6%.es_ES
dc.description.sponsorshipMinistry for Digital Transformation and of Civil Service of the Spanish Government through (6G-CHRONOS) Project under Grant TSI-063000-2021-28es_ES
dc.description.sponsorshipEuropean Union through the Recovery, Transformation and Resilience Plan—NextGenerationEUes_ES
dc.description.sponsorshipMICIU/AEI/ 10.13039/501100011033 under Grant PID2022-137329OB-C43es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBeyond 5Ges_ES
dc.subjectBlocking probabilityes_ES
dc.subjectGBR servicees_ES
dc.titleComputationally Efficient UE Blocking Probability Model for GBR Services in Beyond 5G RANes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ACCESS.2024.3377112
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional