Mostrar el registro sencillo del ítem

dc.contributor.authorCalatayud, Julia
dc.contributor.authorCortés, Juan Carlos
dc.contributor.authorDíaz Navas, José Antonio 
dc.contributor.authorJornet, Marc
dc.date.accessioned2024-10-17T06:51:53Z
dc.date.available2024-10-17T06:51:53Z
dc.date.issued2020-05
dc.identifier.urihttps://hdl.handle.net/10481/96032
dc.description.abstractWe study the random heat partial differential equation on a bounded domain assuming that the diffusion coefficient and the boundary conditions are random variables, and the initial condition is a stochastic process. Under general conditions, this stochastic system possesses a unique solution stochastic process in the almost sure and mean square senses. To quantify the uncertainty for this solution process, the computation of the probability density function is a major goal. By using a random finite difference scheme, we approximate the stochastic solution at each point by a sequence of random variables, whose probability density functions are computable, i.e., we construct a sequence of approximating density functions. We include numerical experiments to illustrate the applicability of our method.es_ES
dc.description.sponsorshipMinisterio de Economía y Competitividades_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRandom heat partial differential equationes_ES
dc.subjectProbability density functiones_ES
dc.subjectNumerical methodes_ES
dc.subjectUncertainty quantificationes_ES
dc.subjectFinite difference schemees_ES
dc.titleConstructing reliable approximations of the probability density function to the random heat PDE via a finite difference schemees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.apnum.2020.01.012
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional