Mostrar el registro sencillo del ítem

dc.contributor.authorJamoos, Mohammad
dc.contributor.authorMora García, Antonio Miguel 
dc.contributor.authorAlKhanafseh, Mohammad
dc.contributor.authorSurakhi, Ola
dc.date.accessioned2024-10-16T08:11:20Z
dc.date.available2024-10-16T08:11:20Z
dc.date.issued2024-09-12
dc.identifier.citationJamoos, M. et. al. Signals 2024, 5(3), 580-596; [https://doi.org/10.3390/signals5030032]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/95996
dc.description.abstractDue to the escalating network throughput and security risks, the exploration of intrusion detection systems (IDSs) has garnered significant attention within the computer science field. The majority of modern IDSs are constructed using deep learning techniques. Nevertheless, these IDSs still have shortcomings where most datasets used for IDS lies in their high imbalance, where the volume of samples representing normal traffic significantly outweighs those representing attack traffic. This imbalance issue restricts the performance of deep learning classifiers for minority classes, as it can bias the classifier in favor of the majority class. To address this challenge, many solutions are proposed in the literature. TDCGAN is an innovative Generative Adversarial Network (GAN) based on a model-driven approach used to address imbalanced data in the IDS dataset. This paper investigates the performance of TDCGAN by employing it to balance data across four benchmark IDS datasets which are CIC-IDS2017, CSE-CIC-IDS2018, KDD-cup 99, and BOT-IOT. Next, four machine learning methods are employed to classify the data, both on the imbalanced dataset and on the balanced dataset. A comparison is then conducted between the results obtained from each to identify the impact of having an imbalanced dataset on classification accuracy. The results demonstrated a notable enhancement in the classification accuracy for each classifier after the implementation of the TDCGAN model for data balancing.es_ES
dc.description.sponsorshipDeanship of Scientific Research at AlQuds Universityes_ES
dc.description.sponsorshipSpanish Ministry of Science, Innovation and Universities MICIU/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/ PRTR, under projects TED2021-131699B-I00 and TED2021-129938B-I00es_ES
dc.description.sponsorshipProjects PID2020-113462RB-I00, PID2020-115570GB-C22, and PID2023-147409NB-C21 of the Spanish Ministry of Economy and Competitivenesses_ES
dc.description.sponsorshipProject C-ING-179-UGR23 financed by the “Consejería de Universidades, Investigación e Innovación” (Andalusian Government, FEDER Program 2021–2027)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectdata balancinges_ES
dc.subjectdeep learninges_ES
dc.subjectgenerative adversarial networkes_ES
dc.titleA Comparative Analysis of the TDCGAN Model for Data Balancing and Intrusion Detectiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/signals5030032
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional