Mostrar el registro sencillo del ítem
Robustifying and simplifying high‑dimensional regression with applications to yearly stock return and telematics data
dc.contributor.author | Marchese, Malvina | |
dc.contributor.author | Martínez Miranda, María Dolores | |
dc.contributor.author | Perch Nielsen, Jens | |
dc.contributor.author | Scholz, Michael | |
dc.date.accessioned | 2024-10-16T07:50:16Z | |
dc.date.available | 2024-10-16T07:50:16Z | |
dc.date.issued | 2024-10-02 | |
dc.identifier.citation | Marchese, M. et. al. Financial Innovation (2024) 10:138. [https://doi.org/10.1186/s40854-024-00657-9] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/95987 | |
dc.description.abstract | The availability of many variables with predictive power makes their selection in a regression context difficult. This study considers robust and understandable low-dimensional estimators as building blocks to improve overall predictive power by optimally combining these building blocks. Our new algorithm is based on generalized cross-validation and builds a predictive model step-by-step from a simple mean to more complex predictive combinations. Empirical applications to annual financial returns and actuarial telematics data show its usefulness in the financial and insurance industries. | es_ES |
dc.description.sponsorship | inisterio de Ciencia, Innovación y Universidades (PID2020- 116587GB-I00) | es_ES |
dc.description.sponsorship | Austrian National Bank (Jubiläumsfondsprojekt 18901) | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Forecasting | es_ES |
dc.subject | Non-linear prediction | es_ES |
dc.subject | Stock returns | es_ES |
dc.title | Robustifying and simplifying high‑dimensional regression with applications to yearly stock return and telematics data | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1186/s40854-024-00657-9 | |
dc.type.hasVersion | VoR | es_ES |