Mostrar el registro sencillo del ítem

dc.contributor.authorMarchese, Malvina
dc.contributor.authorMartínez Miranda, María Dolores 
dc.contributor.authorPerch Nielsen, Jens
dc.contributor.authorScholz, Michael
dc.date.accessioned2024-10-16T07:50:16Z
dc.date.available2024-10-16T07:50:16Z
dc.date.issued2024-10-02
dc.identifier.citationMarchese, M. et. al. Financial Innovation (2024) 10:138. [https://doi.org/10.1186/s40854-024-00657-9]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/95987
dc.description.abstractThe availability of many variables with predictive power makes their selection in a regression context difficult. This study considers robust and understandable low-dimensional estimators as building blocks to improve overall predictive power by optimally combining these building blocks. Our new algorithm is based on generalized cross-validation and builds a predictive model step-by-step from a simple mean to more complex predictive combinations. Empirical applications to annual financial returns and actuarial telematics data show its usefulness in the financial and insurance industries.es_ES
dc.description.sponsorshipinisterio de Ciencia, Innovación y Universidades (PID2020- 116587GB-I00)es_ES
dc.description.sponsorshipAustrian National Bank (Jubiläumsfondsprojekt 18901)es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectForecastinges_ES
dc.subjectNon-linear predictiones_ES
dc.subjectStock returnses_ES
dc.titleRobustifying and simplifying high‑dimensional regression with applications to yearly stock return and telematics dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1186/s40854-024-00657-9
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional