Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis
Metadata
Show full item recordAuthor
Fernández Mosquera, Lorena; Diogo, Cátia; Yambire, King Faisal; Santos, Gabriela; Luna-Sánchez, Marta; Bénit, Paule; Rustin, Pierre; López García, Luis Carlos; Milosevic, Ira; Raimundo, NunoEditorial
Springer Nature
Date
2017-03-27Referencia bibliográfica
Fernández-Mosquera, L. et al. Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis. Sci. Rep. 7, 45076; doi: 10.1038/srep45076 (2017)
Sponsorship
ERC grant 337327; Rückkehrerförderung-Startförderung from the University Medical Center Goettingen; Emmy Noether Award from the Deutsche Forschungsgemeinschaft; Peter und Traudl Engelhorn Stiftung; Grants from Ammi (Association contre les Maladies Mitochondriales); AJII (Association Aide aux Jeunes Handicapés); OLY (Ouvrir les Yeux); ANR (Agence Nationale de la Recherche); Grant from the Ministerio de Economía y Competitividad, Spain; Grants from the ERDF (SAF2015-65786-R); Grants from the foundation “todos somos raros, todos somos únicos”Abstract
Mitochondria are key cellular signaling platforms, affecting fundamental processes such as cell proliferation, differentiation and death. However, it remains unclear how mitochondrial signaling affects other organelles, particularly lysosomes. Here, we demonstrate that mitochondrial respiratory chain (RC) impairments elicit a stress signaling pathway that regulates lysosomal biogenesis via the microphtalmia transcription factor family. Interestingly, the effect of mitochondrial stress over lysosomal biogenesis depends on the timeframe of the stress elicited: while RC inhibition with rotenone or uncoupling with CCCP initially triggers lysosomal biogenesis, the effect peaks after few hours and returns to baseline. Long-term RC inhibition by long-term treatment with rotenone, or patient mutations in fibroblasts and in a mouse model result in repression of lysosomal biogenesis. The induction of lysosomal biogenesis by short-term mitochondrial stress is dependent on TFEB and MITF, requires AMPK signaling and is independent of calcineurin signaling. These results reveal an integrated view of how mitochondrial signaling affects lysosomes, which is essential to fully comprehend the consequences of mitochondrial malfunction, particularly in the context of mitochondrial diseases.