Mostrar el registro sencillo del ítem

dc.contributor.authorÍñiguez, Rubén
dc.contributor.authorGutiérrez Salcedo, Salvador
dc.contributor.authorPoblete Echeverría, Carlos
dc.contributor.authorHernández, Inés
dc.contributor.authorBarrio, Ignacio
dc.contributor.authorTardaguila, Javier
dc.date.accessioned2024-10-10T10:47:40Z
dc.date.available2024-10-10T10:47:40Z
dc.date.issued2024-09-06
dc.identifier.citationÍñiguez, R. et. al. 226 (2024) 109421. [https://doi.org/10.1016/j.compag.2024.109421]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/95798
dc.description.abstractAccurately and automatically estimating vineyard yield is a significant challenge. This study focuses on grape bunch counting in commercial vineyards using advanced deep learning techniques and object detection algorithms. The aim is to overcome the limitations of conventional yield estimation techniques, which are labour intensive, costly, and often inaccurate due to the spatial and temporal variability of the vineyard. This research proposes a non-invasive methodology for identifying grape bunches under different occlusion conditions using RGB cameras and deep learning models. The methodology is based on the collection of RGB images captured under field conditions, coupled with the implementation of the YOLOv4 architecture for data processing and analysis. Statistical indicators were used to evaluate the performance of the developed models. The comprehensive model produced a favourable outcome during validation, with an error rate of 1.12 bunches (R2 = 0.83). In the test dataset, the model achieved an error rate of 1.12 (R2 = 0.81). The results highlight the potential of emerging technologies to significantly improve vineyard yield estimation. This approach has the potential to assist vineyard management practices, enabling more informed and efficient decisions that could increase both the quantity and quality of grape production intended for winemaking.es_ES
dc.description.sponsorshipFPI PhD grants 591/2021 and 1150/2020 by Universidad de La Rioja and Gobierno de La Riojaes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectArtificial intelligencees_ES
dc.subjectYield estimationes_ES
dc.subjectYOLOes_ES
dc.titleDeep learning modelling for non-invasive grape bunch detection under diverse occlusion conditionses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.compag.2024.109421
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional