Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Arco, Laura 
dc.contributor.authorRodriguez, Ismael A
dc.contributor.authorCarriel Araya, Víctor 
dc.contributor.authorBonhome Espinosa, Ana Belén 
dc.contributor.authorCampos Sánchez, Fernando 
dc.contributor.authorKuzhir, Pavel
dc.contributor.authorGarcía López-Durán, Juan De Dios 
dc.contributor.authorLópez López, Modesto Torcuato 
dc.date.accessioned2024-10-07T07:23:38Z
dc.date.available2024-10-07T07:23:38Z
dc.date.issued2016-03-11
dc.identifier.citationRodríguez Arco, L. et. al. Nanoscale, 2016, 8, 8138–8150. [https://doi.org/10.1039/C6NR00224B]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/95585
dc.description.abstractThe inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core– shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core–shell architecture is doubly advantageous. First, gravitational settling for core– shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core–shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core–shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.es_ES
dc.description.sponsorshipProjects FIS2013-41821-R and FISPI14-1343 (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad, Spain, co-funded by ERDF, European Union)es_ES
dc.description.sponsorshipProject PI-0653-2013 (Fundación Pública Andaluza Progreso y Salud, Consejería de Salud, Junta de Andalucía, Spain)es_ES
dc.description.sponsorshipUniversity of Granada (Contratos Puente and Fortalecimiento de Doctores programses_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleBiocompatible magnetic core–shell nanocomposites for engineered magnetic tissueses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1039/C6NR00224B
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional