Mostrar el registro sencillo del ítem

dc.contributor.authorMoleón Moya, Javier 
dc.contributor.authorEscobar Pérez, Juan José 
dc.contributor.authorOrtiz, Andrés
dc.contributor.authorOrtega Lopera, Julio 
dc.contributor.authorGonzález Peñalver, Jesús 
dc.contributor.authorMartín Smith, Pedro Jesús 
dc.contributor.authorGan, John Q.
dc.contributor.authorDamas Hermoso, Miguel 
dc.date.accessioned2024-10-03T08:16:24Z
dc.date.available2024-10-03T08:16:24Z
dc.date.issued2020-06-11
dc.identifier.citationLeón J, Escobar JJ, Ortiz A, Ortega J, González J, Martín-Smith P, et al. (2020) Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off. PLoS ONE 15(6): e0234178. https://doi.org/10.1371/journal.pone.0234178es_ES
dc.identifier.urihttps://hdl.handle.net/10481/95461
dc.description.abstractElectroencephalography (EEG) datasets are often small and high dimensional, owing to cumbersome recording processes. In these conditions, powerful machine learning techniques are essential to deal with the large amount of information and overcome the curse of dimensionality. Artificial Neural Networks (ANNs) have achieved promising performance in EEG-based Brain-Computer Interface (BCI) applications, but they involve computationally intensive training algorithms and hyperparameter optimization methods. Thus, an awareness of the quality-cost trade-off, although usually overlooked, is highly beneficial. In this paper, we apply a hyperparameter optimization procedure based on Genetic Algorithms to Convolutional Neural Networks (CNNs), Feed-Forward Neural Networks (FFNNs), and Recurrent Neural Networks (RNNs), all of them purposely shallow. We compare their relative quality and energy-time cost, but we also analyze the variability in the structural complexity of networks of the same type with similar accuracies. The experimental results show that the optimization procedure improves accuracy in all models, and that CNN models with only one hidden convolutional layer can equal or slightly outperform a 6-layer Deep Belief Network. FFNN and RNN were not able to reach the same quality, although the cost was significantly lower. The results also highlight the fact that size within the same type of network is not necessarily correlated with accuracy, as smaller models can and do match, or even surpass, bigger ones in performance. In this regard, overfitting is likely a contributing factor since deep learning approaches struggle with limited training examples.es_ES
dc.description.sponsorshipGrant number PGC2018-098813-B-C31 (Spanish Ministerio de Ciencia, Innovacio´n y Universidades)es_ES
dc.description.sponsorshipGrant numbers PGC2018-098813-B-C32 and PSI2015-65848-R (Spanish Ministerio de Ciencia, Innovación y Universidades)es_ES
dc.language.isoenges_ES
dc.publisherPlos Onees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleDeep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-offes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1371/journal.pone.0234178
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional