Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz Jiménez, María Dolores 
dc.contributor.authorFernández Basso, Carlos Jesús 
dc.contributor.authorGómez-Romero, Juan 
dc.contributor.authorMartín Bautista, María José 
dc.date.accessioned2024-10-02T10:04:05Z
dc.date.available2024-10-02T10:04:05Z
dc.date.issued2023-11-13
dc.identifier.citationRuíz Jiménez, M.D. et. al. Sci Rep 13, 19810 (2023). [https://doi.org/10.1038/s41598-023-47056-1]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/95413
dc.description.abstractThe enormous amount of data generated by sensors and other data sources in modern grid management systems requires new infrastructures, such as IoT (Internet of Things) and Big Data architectures. This, in combination with Data Mining techniques, allows the management and processing of all these heterogeneous massive data in order to discover new insights that can help to reduce the energy consumption of the building. In this paper, we describe a developed methodology for an Internet of Things (IoT) system based on a robust big data architecture. This innovative approach, combined with the power of Spark algorithms, has been proven to uncover rules representing hidden connections and patterns in the data extracted from a building in Bucharest. These uncovered patterns were essential for improving the building’s energy efficiency.es_ES
dc.description.sponsorshipGrant PID2021-123960OB-I00 funded by MCIN/ AEI/10.13039/501100011033es_ES
dc.description.sponsorshipERDF A way of making Europe and by the DESINFOSCAN project, founded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTR (Grant TED2021- 1289402B-C21)es_ES
dc.description.sponsorshipUniversities through the EU-funded Margarita Salas programme NextGenerationEUes_ES
dc.description.sponsorshipProject IA4TES (MIA.2021.M04.0008), funded by the European Union—NextGenerationEUes_ES
dc.description.sponsorshipEuropean Union (Energy IN TIME Project, No. 608981)es_ES
dc.description.sponsorshipGrant PID2021-123960OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europees_ES
dc.description.sponsorshipDESINFOSCAN project, founded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipMinistry of Universities through the EU-funded margarita salas programme NextGenerationEUes_ES
dc.language.isoenges_ES
dc.publisherNature Researches_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleA big data association rule mining based approach for energy building behaviour analysis in an IoT environmentes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/608981es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1038/s41598-023-47056-1
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional