Mostrar el registro sencillo del ítem

dc.contributor.authorLee, Jihun
dc.contributor.authorLee, Ah-Hyoung
dc.contributor.authorLeung, Vincent
dc.contributor.authorLaiwalla, Farah
dc.contributor.authorLópez Gordo, Miguel Ángel 
dc.contributor.authorLarson, Lawrence
dc.contributor.authorNurmikko, Arto
dc.date.accessioned2024-10-02T09:08:57Z
dc.date.available2024-10-02T09:08:57Z
dc.date.issued2024-03-19
dc.identifier.citationLee, J. et. al. Nat Electron 7, 313–324 (2024). [https://doi.org/10.1038/s41928-024-01134-y]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/95412
dc.description.abstractNetworks of spatially distributed radiofrequency identification sensors could be used to collect data in wearable or implantable biomedical applications. However, the development of scalable networks remains challenging. Here we report a wireless radiofrequency network approach that can capture sparse event-driven data from large populations of spatially distributed autonomous microsensors. We use a spectrally efficient, low-error-rate asynchronous networking concept based on a code-division multiple-access method. We experimentally demonstrate the network performance of several dozen submillimetre-sized silicon microchips and complement this with large-scale in silico simulations. To test the notion that spike-based wireless communication can be matched with downstream sensor population analysis by neuromorphic computing techniques, we use a spiking neural network machine learning model to decode prerecorded open source data from eight thousand spiking neurons in the primate cortex for accurate prediction of hand movement in a cursor control task.es_ES
dc.description.sponsorshipNIH Award 1S10OD025181 (Brown University for computational resources)es_ES
dc.language.isoenges_ES
dc.publisherNature Researches_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAn asynchronous wireless network for capturing event-driven data from large populations of autonomous sensors Jihun Leees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1038/s41928-024-01134-y
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional