Afficher la notice abrégée

dc.contributor.authorVillalonga Palliser, Claudia 
dc.contributor.authorRazzaq, Muhammad Asif
dc.contributor.authorKhan, Wajahat Ali
dc.contributor.authorPomares Cintas, Héctor Emilio 
dc.contributor.authorRojas Ruiz, Ignacio 
dc.contributor.authorLee, Sungyoung
dc.contributor.authorBaños Legrán, Oresti 
dc.date.accessioned2024-10-01T10:28:30Z
dc.date.available2024-10-01T10:28:30Z
dc.date.issued2016-09-29
dc.identifier.citationVillalonga, C.; Razzaq, M.A.; Khan, W.A.; Pomares, H.; Rojas, I.; Lee, S.; Banos, O. Ontology-Based High-Level Context Inference for Human Behavior Identification. Sensors 2016, 16, 1617. https://doi.org/10.3390/s16101617es_ES
dc.identifier.urihttps://hdl.handle.net/10481/95345
dc.description.abstractRecent years have witnessed a huge progress in the automatic identification of individual primitives of human behavior, such as activities or locations. However, the complex nature of human behavior demands more abstract contextual information for its analysis. This work presents an ontology-based method that combines low-level primitives of behavior, namely activity, locations and emotions, unprecedented to date, to intelligently derive more meaningful high-level context information. The paper contributes with a new open ontology describing both low-level and high-level context information, as well as their relationships. Furthermore, a framework building on the developed ontology and reasoning models is presented and evaluated. The proposed method proves to be robust while identifying high-level contexts even in the event of erroneously-detected low-level contexts. Despite reasonable inference times being obtained for a relevant set of users and instances, additional work is required to scale to long-term scenarios with a large number of users.es_ES
dc.description.sponsorshipIndustrial Core Technology Development Program (10049079, Develop of mining core technology exploiting personal big data) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea)es_ES
dc.description.sponsorshipSpanish Ministry of Economy and Competitiveness (MINECO) Project TIN2015-71873-R together with the European Fund for Regional Development (FEDER)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectContext recognitiones_ES
dc.subjectContext inferencees_ES
dc.subjectOntologieses_ES
dc.titleOntology-Based High-Level Context Inference for Human Behavior Identificationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/s16101617
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional