Modeling low-intensity ultrasound mechanotherapy impact on growing cancer stem cells
Metadata
Show full item recordAuthor
Blanco Besteiro, Beatriz; Palma Guerrero, Roberto; Hurtado Estévez, Manuel; Jiménez González, Gema; Griñan-Lison, Carmen; Melchor Rodríguez, Juan Manuel; Marchal Corrales, Juan Antonio; Gomez, Hector; Rus Carlborg, Guillermo; Soler Vizcaino, Juan SegundoEditorial
Elsevier
Materia
Cancer stem cells Computational mechanics Low-intensity ultrasound
Date
2024-09-05Referencia bibliográfica
Blanco, B. et. al. 228 (2025) 87–102. [https://doi.org/10.1016/j.matcom.2024.08.030]
Sponsorship
Ministry of Science, Innovation and Universities of Spain, project numbers PID2020-115372RB-I00 (B.B., M.H. and G.R.), PID2022-137228OB-I00 (MICIU/AEI /10.13039/501100011033) (J.S.); Modeling Nature Research Unit, Grant QUAL21-011 funded by Consejería de Universidad, Investigación e Innovación (Junta de Andalucía) (J.S.,B.B., M.H., G.R., G.J, C.G and J.A.M); Consejería de Universidad, Investigación e Innovación from Junta de Andalucía, P21.00182 (B.B., M.H. and G.R.); MINECO-FEDER (Spain) research grant number EQC2021-006920-P (J.A.M.) and PID2019-106947RA-C22 (B.B., J.M. and G.R.) and from the Chair ‘Doctors Galera-Requena in cancer stem cell research’ (CMC-CTS963); Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020—FEDER funds—); Ministry of Science, Innovation and Universities of Spain, FPU17/01415. Under grant 101096884; Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía A-CTS-180-UGR20 (G.J, C.G and J.A.M.), B-FQM- 580-UGR20 (B.B., J.S.)Abstract
Targeted therapeutic interventions utilizing low-intensity ultrasound (LIUS) exhibit substantial
potential for hindering the proliferation of cancer stem cells. This investigation introduces a
multiscale model and computational framework to comprehensively explore the therapeutic
LIUS on poroelastic tumor dynamics, thereby unraveling the intricacies of mechanotransduction
mechanisms at play. Our model includes both macroscopic timescales encompassing days and
rapid timescales spanning from microseconds to seconds, facilitating an in-depth comprehension
of tumor behavior. We unveil the discerning suppression or reorientation of cancer cell proliferation
and migration, enhancing a notable redistribution of cellular phases and stresses within
the tumor microenvironment. Our findings defy existing paradigms by elucidating the impact
of LIUS on cancer stem cell behavior. This endeavor advances our fundamental understanding
of mechanotransduction phenomena in the context of LIUS therapy, thus underscoring its
promising as a targeted therapeutic modality for cancer treatment. Furthermore, our results
make a substantial contribution to the broader scientific community by shedding light on
the intricate interplay between mechanical forces, cellular responses, and the spatiotemporal
evolution of tumors. These insights hold the promising to promote a new perspective for the
future development of pioneering and highly efficacious therapeutic strategies for combating
cancer in a personalized manner.