Afficher la notice abrégée

dc.contributor.authorGarcía Fernández, Rosa María 
dc.contributor.authorPalacios González, Federico
dc.date.accessioned2024-09-23T10:54:23Z
dc.date.available2024-09-23T10:54:23Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/10481/94892
dc.description.abstractIn this paper we extend multiresolution analysis structures on R^q to approximate multivariate probability density functions. We propose a consistent estimator for a multivariate multiresolution approximation (MMR) of a multivariate pdf. And we also develop an algorithm to estimate the MMR pdf that behaves well when handling big data. This algorithm performs better, in terms of running time, than traditional optimization algorithms. For large samples, the estimations are as good as those obtained by maximum likelihood. Numerical results are provided to illustrate the method.es_ES
dc.language.isoenges_ES
dc.publisherTaylor & Francis Onlinees_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMultiresolution Analysises_ES
dc.subjectDensity Estimationes_ES
dc.subjectCubic Box Splinees_ES
dc.titleMultiresolution approximation and consistent estimation of a multivariate density functiones_ES
dc.typepreprintes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1080/00949655.2022.2044480
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional