Mostrar el registro sencillo del ítem

dc.contributor.authorScheidegger, Laura
dc.contributor.authorFernández Rodríguez, Miguel Ángel 
dc.contributor.authorGeisel, Karen
dc.contributor.authorZanini, Michele
dc.contributor.authorElnathan, Roey
dc.contributor.authorRichtering, Walter
dc.contributor.authorIsa, Lucio
dc.date.accessioned2024-09-20T08:43:35Z
dc.date.available2024-09-20T08:43:35Z
dc.date.issued2017
dc.identifier.citationPublished version: Scheidegger, Laura et al. Compression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithography. Phys. Chem. Chem. Phys. 13, 2017. doi:https://doi.org/10.1039/C6CP07896Fes_ES
dc.identifier.urihttps://hdl.handle.net/10481/94760
dc.descriptionThe following authors acknowledge financial support from the following sources: L.I. and M.Z. from the Swiss National Science Foundation Grant PP00P2 144646/1, M.A.F.R. from the Swiss Government Excellence Postdoc Scholarship 2016.0246, and K.G. and W.R. from the Deutsche Forschungsgemeinschaft Collaborative Research Center SFB985.es_ES
dc.description.abstractControlling the microstructure of monolayers of microgels confined at a water/oil interface is the key to their successful application as nanolithography masks after deposition on a solid substrate. Previous work demonstrated that compression of the monolayer can be used to tune the microgel arrangement and to explore the full two-dimensional area–pressure phase diagram of the particles trapped at the interface. Here, we explore a new size range, using microgels with 210 nm and 1.45 μm bulk diameters, respectively. We start by investigating the properties of isolated particles in situ at the interface by freeze-fracture cryo-SEM, and after deposition using an atomic force microscope. We then study their collective behavior in a compressed monolayer and highlight significant differences in terms of the accessible structural phases and their transitions. More specifically, the larger microgels behave similar to colloids with a hard core and a soft polymeric shell, exhibiting capillarity driven clustering at a large specific area and a solid–solid phase transition between two hexagonal lattices at higher compressions. The smaller particles instead show no aggregation and a smooth transition from a hexagonal lattice to a dense disordered monolayer. Finally, we demonstrate that the larger microgels can be effectively turned into masks for the fabrication of vertically aligned silicon nanowires by means of metal-assisted chemical etching. These findings highlight the subtle interplay between particle architecture, adsorption and interactions at the interface, the understanding and harnessing of which are at the basis of their successful use as nanopatterning tools.es_ES
dc.description.sponsorshipSwiss National Science Foundation PP00P2 144646/1es_ES
dc.description.sponsorshipSwiss Government Excellence Postdoc Scholarship 2016.0246es_ES
dc.description.sponsorshipDeutsche Forschungsgemeinschaft Collaborative Research Center SFB985es_ES
dc.language.isoenges_ES
dc.publisherThe Royal Society of Chemistryes_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleCompression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithographyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1039/C6CP07896F
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional