Mostrar el registro sencillo del ítem
The Covariety of Saturated Numerical Semigroups with Fixed Frobenius Number
dc.contributor.author | Rosales González, José Carlos | |
dc.contributor.author | Moreno Frías, María Ángeles | |
dc.date.accessioned | 2024-09-19T07:57:30Z | |
dc.date.available | 2024-09-19T07:57:30Z | |
dc.date.issued | 2024-06-03 | |
dc.identifier.citation | Rosales, J.C.; Moreno-Frías, M.Á. The Covariety of Saturated Numerical Semigroups with Fixed Frobenius Number. Foundations 2024, 4, 249–262. https://doi.org/10.3390/foundations4020016 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/94699 | |
dc.description.abstract | In this work, we show that if F is a positive integer, then Sat(F) = {S | S is a saturated numerical semigroup with Frobenius number F} is a covariety. As a consequence, we present two algorithms: one that computes Sat(F), and another which computes all the elements of Sat(F) with a fixed genus. If X ⊆ S\Δ(F) for some S ∈ Sat(F), then we see that there exists the least element of Sat(F) containing X. This element is denoted by Sat(F)[X]. If S ∈ Sat(F), then we define the Sat(F)-rank of S as the minimum of {cardinality(X) | S = Sat(F)[X]}. In this paper, we present an algorithm to compute all the elements of Sat(F) with a given Sat(F)-rank. | es_ES |
dc.description.sponsorship | Proyecto de Excelencia de la Junta de Andalucía Grant Number ProyExcel_00868 | es_ES |
dc.description.sponsorship | Junta de Andalucía Grant Number FQM-343 | es_ES |
dc.description.sponsorship | Junta de Andalucía Grant Number FQM-298 | es_ES |
dc.description.sponsorship | Proyecto de investigación del Plan Propio—UCA 2022-2023 (PR2022-004) | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Numerical semigroup | es_ES |
dc.subject | Covariety | es_ES |
dc.subject | Frobenius number | es_ES |
dc.title | The Covariety of Saturated Numerical Semigroups with Fixed Frobenius Number | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3390/foundations4020016 | |
dc.type.hasVersion | VoR | es_ES |