Afficher la notice abrégée

dc.contributor.authorAquino Brítez, Sergio
dc.contributor.authorGarcía Sánchez, Pablo 
dc.contributor.authorOrtiz, Andrés
dc.contributor.authorAquino Brítez, Diego
dc.date.accessioned2024-09-18T12:01:07Z
dc.date.available2024-09-18T12:01:07Z
dc.date.issued2024-07-09
dc.identifier.citationAquino-Brítez, S.; García-Sánchez, P.; Ortiz, A.; Aquino-Brítez, D. Energy Efficiency Evaluation of Frameworks for Algorithms in Time Series Forecasting. Eng. Proc. 2024, 68, 30. https://doi.org/10.3390/engproc2024068030es_ES
dc.identifier.urihttps://hdl.handle.net/10481/94661
dc.description.abstractIn this study, the energy efficiency of time series forecasting algorithms is addressed in a broad context, highlighting the importance of optimizing energy consumption in computational applications. The purpose of this study is to compare the energy efficiency and accuracy of algorithms implemented in different frameworks, specifically Darts, TensorFlow, and Prophet, using the ARIMA technique. The experiments were conducted on a local infrastructure. The Python library CodeCarbon and the physical energy consumption measurement device openZmeter were used to measure the energy consumption. The results show significant differences in energy consumption and algorithm accuracy depending on the framework and execution environment. We conclude that it is possible to achieve an optimal balance between energy efficiency and accuracy in time series forecasting, which has important implications for developing more sustainable and efficient applications. This study provides valuable guidance for researchers and professionals interested in the energy efficiency of forecasting algorithms.es_ES
dc.description.sponsorshipMinisterio Español de Ciencia e Innovación under project numbers PID2023-147409NB-C21, PID2020-115570GB-C22 and PID2022-137461NB-C32 funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU, as well as TIC251-G-FEDER and C-ING-027-UGR23 projects, funded by ERDF/EUes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectTime serieses_ES
dc.subjectForecastinges_ES
dc.subjectGreen computinges_ES
dc.titleEnergy Efficiency Evaluation of Frameworks for Algorithms in Time Series Forecastinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/engproc2024068030
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional