Mostrar el registro sencillo del ítem
Big Data Techniques Applied to Forecast Photovoltaic Energy Demand in Spain
dc.contributor.author | Tapia García, Juan Miguel | |
dc.contributor.author | Baca Ruiz, Luis Gonzaga | |
dc.contributor.author | Criado Ramón, David | |
dc.contributor.author | Pegalajar Jiménez, María Del Carmen | |
dc.date.accessioned | 2024-09-18T10:34:18Z | |
dc.date.available | 2024-09-18T10:34:18Z | |
dc.date.issued | 2024-07-03 | |
dc.identifier.citation | Tapia-García, J.; Ruiz, L.G.B.; Criado-Ramón, D.; Pegalajar, M.C. Big Data Techniques Applied to Forecast Photovoltaic Energy Demand in Spain. Eng. Proc. 2024, 68, 11. https://doi.org/10.3390/engproc2024068011 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/94652 | |
dc.description.abstract | Renewable energies play an important role in our society’s development, addressing the challenges presented by climate change. Specifically, in countries like Spain, technologies such as solar energy assume a crucial significance, enabling the generation of clean energy. This study addresses the critical need to accurately predict photovoltaic (PV) energy demand in Spain. By using the data collected from the Spanish Electricity System, four models (Linear Regression, Random Forest, Recurrent Neural Network, and LightGBM) were implemented, with adaptations for Big Data. The LR model proved unsuitable, while the LGBM emerged as the most accurate and timely performer. The incorporation of Big Data adaptations amplifies the significance of our findings, highlighting the effectiveness of the LGBM in forecasting PV energy demand with both accuracy and efficiency. | es_ES |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (Spain) (Grant PID2020-112495RB-C21 funded by MCIN/AEI/10.13039/501100011033) | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Photovoltaic | es_ES |
dc.subject | Energy demand | es_ES |
dc.subject | Renewable energy | es_ES |
dc.title | Big Data Techniques Applied to Forecast Photovoltaic Energy Demand in Spain | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3390/engproc2024068011 | |
dc.type.hasVersion | VoR | es_ES |