Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Ochoa, Álvaro 
dc.contributor.authorQuirantes Piné, Rosa
dc.contributor.authorBorrás-Linares, Isabel
dc.contributor.authorCádiz Gurrea, María de la Luz 
dc.contributor.authorPRECISESADS Clinical Consortium
dc.contributor.authorAlarcón-Riquelme, Marta E.
dc.contributor.authorBrunius, Carl
dc.contributor.authorSegura-Carretero, Antonio 
dc.date.accessioned2024-09-17T11:09:02Z
dc.date.available2024-09-17T11:09:02Z
dc.date.issued2020-01-08
dc.identifier.citationFernández Ochoa, A. et. al. Metabolites 2020, 10, 28. [https://doi.org/10.3390/metabo10010028]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/94611
dc.description.abstractData pre-processing of the LC-MS data is a critical step in untargeted metabolomics studies in order to achieve correct biological interpretations. Several tools have been developed for pre-processing, and these can be classified into either commercial or open source software. This case report aims to compare two specific methodologies, Agilent Profinder vs. R pipeline, for a metabolomic study with a large number of samples. Specifically, 369 plasma samples were analyzed by HPLC-ESI-QTOF-MS. The collected data were pre-processed by both methodologies and later evaluated by several parameters (number of peaks, degree of missingness, quality of the peaks, degree of misalignments, and robustness in multivariate models). The vendor software was characterized by ease of use, friendly interface and good quality of the graphs. The open source methodology could more e ectively correct the drifts due to between and within batch e ects. In addition, the evaluated statistical methods achieved better classification results with higher parsimony for the open source methodology, indicating higher data quality. Although both methodologies have strengths and weaknesses, the open source methodology seems to be more appropriate for studies with a large number of samples mainly due to its higher capacity and versatility that allows combining di erent packages, functions, and methods in a single environment.es_ES
dc.description.sponsorshipInnovative Medicines Initiative Joint Undertaking under grant agreement No. 115565es_ES
dc.description.sponsorshipEuropean Union’s Seventh Framework Programme (FP7/2007-2013)es_ES
dc.description.sponsorshipEuropean Federation of Pharmaceutical Industries and Associations (EFPIA) companieses_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectmetabolomicses_ES
dc.subjectdata pre-processinges_ES
dc.subjectmass spectrometry es_ES
dc.titleA Case Report of Switching from Specific Vendor-Based to R-Based Pipelines for Untargeted LC-MS Metabolomicses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/2007-2013es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/metabo10010028
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional