Afficher la notice abrégée

Battery State Estimation with ANN and SVR Evaluating Electrochemical Impedance Spectra Generalizing DC Currents

dc.contributor.authorLoechte, Andre
dc.contributor.authorLoechte, Andre
dc.contributor.authorRojas Ruiz, Ignacio 
dc.contributor.authorRojas Ruiz, Ignacio 
dc.contributor.authorGloesekoetter, Peter
dc.contributor.authorGloesekoetter, Peter
dc.date.accessioned2024-09-16T10:33:35Z
dc.date.available2024-09-16T10:33:35Z
dc.date.issued2021-12-28
dc.date.issued2021-12-28
dc.identifier.citationLoechte, A.; Rojas Ruiz, I.; Gloesekoetter, P. Appl. Sci. 2022, 12, 274. [https://doi.org/10.3390/app12010274]es_ES
dc.identifier.citationLoechte, A.; Rojas Ruiz, I.; Gloesekoetter, P. Appl. Sci. 2022, 12, 274. [https://doi.org/10.3390/app12010274]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/94525
dc.description.abstractThe demand for energy storage is increasing massively due to the electrification of transport and the expansion of renewable energies. Current battery technologies cannot satisfy this growing demand as they are difficult to recycle, as the necessary raw materials are mined under precarious conditions, and as the energy density is insufficient. Metal–air batteries offer a high energy density as there is only one active mass inside the cell and the cathodic reaction uses the ambient air. Various metals can be used, but zinc is very promising due to its disposability and non-toxic behavior, and as operation as a secondary cell is possible. Typical characteristics of zinc–air batteries are flat charge and discharge curves. On the one hand, this is an advantage for the subsequent power electronics, which can be optimized for smaller and constant voltage ranges. On the other hand, the state determination of the system becomes more complex, as the voltage level is not sufficient to determine the state of the battery. In this context, electrochemical impedance spectroscopy is a promising candidate as the resulting impedance spectra depend on the state of charge, working point, state of aging, and temperature. Previous approaches require a fixed operating state of the cell while impedance measurements are being performed. In this publication, electrochemical impedance spectroscopy is therefore combined with various machine learning techniques to also determine successfully the state of charge during charging of the cell at non-fixed charging currents.es_ES
dc.description.sponsorshipEFRE—LeitmarktAgentur.NRW grant numbers 0801585, KESW-1-1-006Bes_ES
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectelectrochemical impedance spectroscopyes_ES
dc.subjectartificial neural networkses_ES
dc.subjectsupport vector regressiones_ES
dc.titleBattery State Estimation with ANN and SVR Evaluating Electrochemical Impedance Spectra Generalizing DC Currentses_ES
dc.titleBattery State Estimation with ANN and SVR Evaluating Electrochemical Impedance Spectra Generalizing DC Currentses_ES
dc.typejournal articlees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/app12010274
dc.identifier.doi10.3390/app12010274
dc.type.hasVersionVoRes_ES
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional