Mostrar el registro sencillo del ítem

dc.contributor.authorAbrego-González, José
dc.contributor.authorAguirre Molina, Eugenio 
dc.contributor.authorGarcía Silvente, Miguel 
dc.date.accessioned2024-09-13T10:35:31Z
dc.date.available2024-09-13T10:35:31Z
dc.date.issued2024
dc.identifier.citationProceedings of the 23rd International Workshop of Physical Agents (WAF 2023). Pág. 52-66.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/94417
dc.descriptionThis work was made possible thanks to the support of Senacyt Panamá (Scholarship No. 270-2022-164) and Grant PID2022-138453OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe.”es_ES
dc.description.abstractThe primary objective of this work is to develop an efficient and rapid proposal for detecting and tracking persons based on images captured by a mobile robot. This will be achieved through the integration of deep learning-based detectors and state-of-the-art tracking algorithms. Pre-trained detectors on the COCO dataset will be evaluated to identify the most effective ones for human detection, and tracking capabilities will subsequently be added through cutting-edge algorithms. The effec- tiveness of the solution will be measured using specialized datasets and specific performance metrics. Additionally, a new dataset, ROBOT_7, will be created, designed to reflect the operational scenarios of the mo- bile robot PeopleBot. An extensive experimentation has been carried out in order to identify the best combination of detector and tracking algorithm for this application. As conclusion, we propose a specific com- bination of detector and tracking algorithm that achieves high levels of F1-score and CLEAR MOT performance achieving rates of frames per second good enough for a real-time performance.es_ES
dc.description.sponsorshipSenacyt Panamá (Scholarship No. 270-2022-164)es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 PID2022-138453OB-I00es_ES
dc.description.sponsorship“ERDF A way of making Europe”es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPeople detection and trackinges_ES
dc.subjectDeep learninges_ES
dc.subjectYOLOes_ES
dc.subjectTensorFlowes_ES
dc.titlePeople detection and tracking using deep learning based approacheses_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional