Mostrar el registro sencillo del ítem
Population Power Curves in ASCA With Permutation Testing
dc.contributor.author | Camacho Páez, José | |
dc.contributor.author | Sorochan Armstrong, Michael | |
dc.date.accessioned | 2024-09-11T10:23:33Z | |
dc.date.available | 2024-09-11T10:23:33Z | |
dc.date.issued | 2024-08-26 | |
dc.identifier.citation | Camacho, J. and Sorochan Armstrong, M. (2024), Population Power Curves in ASCA With Permutation Testing. Journal of Chemometrics e3596. https://doi.org/10.1002/cem.3596 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/94340 | |
dc.description.abstract | In this paper, we revisit the power curves in ANOVA simultaneous component analysis (ASCA) based on permutation testing and introduce the population curves derived from population parameters describing the relative effect among factors and interactions. The relative effect has important practical implications: The statistical power of a given factor depends on the design of other factors in the experiment and not only of the sample size. Thus, understanding the relative power in a specific experimental design can be extremely useful to maximize our capability of success when planning the experiment. In the paper, we derive relative and absolute population curves, where the former represent statistical power in terms of the normalized effect size between structure and noise, and the latter in terms of the sample size. Both types of population curves allow us to make decisions regarding the number and nature (fixed/random) of factors, their relationships (crossed/nested), and the number of levels and replicates, among others, in an multivariate experimental design (e.g., an omics study) during the planning phase of the experiment. We illustrate both types of curves through simulation. | es_ES |
dc.description.sponsorship | Agencia Estatal de Investigación in Spain, MCIN/AEI/10.13039/501100011033, grant no. PID2020-113462RB-I00 | es_ES |
dc.description.sponsorship | European Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101106986 | es_ES |
dc.description.sponsorship | Funding for open access charge: Universidad de Granada/CBUA. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Wiley-Blackwell Verlag GmbH | es_ES |
dc.rights | Atribución-NoComercial 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | ANOVA simultaneous component analysis | es_ES |
dc.subject | Effect size | es_ES |
dc.subject | Multivariate ANOVA | es_ES |
dc.title | Population Power Curves in ASCA With Permutation Testing | es_ES |
dc.type | journal article | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/MSC 101106986 | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1002/cem.3596 | |
dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.