Afficher la notice abrégée

dc.contributor.authorCamacho Páez, José 
dc.contributor.authorSorochan Armstrong, Michael
dc.date.accessioned2024-09-11T10:23:33Z
dc.date.available2024-09-11T10:23:33Z
dc.date.issued2024-08-26
dc.identifier.citationCamacho, J. and Sorochan Armstrong, M. (2024), Population Power Curves in ASCA With Permutation Testing. Journal of Chemometrics e3596. https://doi.org/10.1002/cem.3596es_ES
dc.identifier.urihttps://hdl.handle.net/10481/94340
dc.description.abstractIn this paper, we revisit the power curves in ANOVA simultaneous component analysis (ASCA) based on permutation testing and introduce the population curves derived from population parameters describing the relative effect among factors and interactions. The relative effect has important practical implications: The statistical power of a given factor depends on the design of other factors in the experiment and not only of the sample size. Thus, understanding the relative power in a specific experimental design can be extremely useful to maximize our capability of success when planning the experiment. In the paper, we derive relative and absolute population curves, where the former represent statistical power in terms of the normalized effect size between structure and noise, and the latter in terms of the sample size. Both types of population curves allow us to make decisions regarding the number and nature (fixed/random) of factors, their relationships (crossed/nested), and the number of levels and replicates, among others, in an multivariate experimental design (e.g., an omics study) during the planning phase of the experiment. We illustrate both types of curves through simulation.es_ES
dc.description.sponsorshipAgencia Estatal de Investigación in Spain, MCIN/AEI/10.13039/501100011033, grant no. PID2020-113462RB-I00es_ES
dc.description.sponsorshipEuropean Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101106986es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Granada/CBUA.es_ES
dc.language.isoenges_ES
dc.publisherWiley-Blackwell Verlag GmbHes_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectANOVA simultaneous component analysises_ES
dc.subjectEffect sizees_ES
dc.subjectMultivariate ANOVAes_ES
dc.titlePopulation Power Curves in ASCA With Permutation Testinges_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/MSC 101106986es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/cem.3596
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial 4.0 Internacional