Afficher la notice abrégée

dc.contributor.authorHaghbin, Masoud
dc.contributor.authorChiachío Ruano, Juan 
dc.contributor.authorMuñoz, Sergio
dc.contributor.authorEscalona Franco, Jose Luis
dc.contributor.authorGuillén, Antonio J.
dc.contributor.authorCrespo Marquez, Adolfo
dc.contributor.authorCantero Chinchilla, Sergio
dc.date.accessioned2024-09-05T11:09:00Z
dc.date.available2024-09-05T11:09:00Z
dc.date.issued2024-07-17
dc.identifier.citationHaghbin, M.; Chiachío, J.; Muñoz, S.; Escalona Franco, J.L.; Guillén, A.J.; Crespo Marquez, A.; Cantero-Chinchilla, S. Predicting Rail Corrugation Based on Convolutional Neural Networks Using Vehicle’s Acceleration Measurements. Sensors 2024, 24, 4627. https://doi.org/10.3390/s24144627es_ES
dc.identifier.urihttps://hdl.handle.net/10481/94016
dc.description.abstractThis paper presents a deep learning approach for predicting rail corrugation based on onboard rolling-stock vertical acceleration and forward velocity measurements using One-Dimensional Convolutional Neural Networks (CNN-1D). The model’s performance is examined in a 1:10 scale railway system at two different forward velocities. During both the training and test stages, the CNN-1D produced results with mean absolute percentage errors of less than 5% for both forward velocities, confirming its ability to reproduce the corrugation profile based on real-time acceleration and forward velocity measurements. Moreover, by using a Gradient-weighted Class Activation Mapping (Grad-CAM) technique, it is shown that the CNN-1D can distinguish various regions, including the transition from damaged to undamaged regions and one-sided or two-sided corrugated regions, while predicting corrugation. In summary, the results of this study reveal the potential of data-driven techniques such as CNN-1D in predicting rails’ corrugation using online data from the dynamics of the rolling-stock, which can lead to more reliable and efficient maintenance and repair of railways.es_ES
dc.description.sponsorshipProject Geminhi (Digital model for Intelligent Maintenance based on Hybrid prognostics models) (Grant US-1381456, founded by Junta de Andalucía, Andalucía FEDER 2014–2020)es_ES
dc.description.sponsorshipAMADIT Project (PID2022-137748OB-C32), funded by MCIN/AEI/10.13039/501100011033/FEDER, EUes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRail corrugationes_ES
dc.subjectDeep learninges_ES
dc.subjectConvolutional neural networkses_ES
dc.titlePredicting Rail Corrugation Based on Convolutional Neural Networks Using Vehicle’s Acceleration Measurementses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/s24144627
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional