Afficher la notice abrégée

dc.contributor.authorSasmal, Buddhadev
dc.contributor.authorDas, Arunita
dc.contributor.authorGopal Dhal, Krishna
dc.contributor.authorBelal Saheb, Sk.
dc.contributor.authorAbu Khurma, Ruba
dc.contributor.authorCastillo Valdivieso, Pedro Ángel 
dc.date.accessioned2024-09-05T07:27:51Z
dc.date.available2024-09-05T07:27:51Z
dc.date.issued2024-07-25
dc.identifier.citationSasmal, B. et. al. 55 (2024) 110763. [https://doi.org/10.1016/j.dib.2024.110763]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93961
dc.description.abstractGroundnut (Arachis hypogaea) is a widely cultivated legume crop that plays a vital role in global agriculture and food se- curity. It is a major source of vegetable oil and protein for human consumption, as well as a cash crop for farmers in many regions. Despite the importance of this crop to house- hold food security and income, diseases, particularly Leaf spot (early and late), Alternaria leaf spot, Rust, and Rosette, have had a significant impact on its production. Deep learn- ing (DL) techniques, especially convolutional neural networks (CNNs), have demonstrated significant ability for early di- agnosis of the plant leaf diseases. However, the availabil- ity of groundnut-specific datasets for training and evalua- tion of DL models is limited, hindering the development and benchmarking of groundnut-related deep learning applica- tions. Therefore, this study provides a dataset of groundnut leaf images, both diseased and healthy, captured in real culti- vation fields at Ramchandrapur, Purba Medinipur, West Ben- gal, using a smartphone camera. The dataset contains a to- tal of 1720 original images, that can be utilized to train DL models to detect groundnut leaf diseases at an early stage.es_ES
dc.description.sponsorshipMinisterio Español de Ciencia e Innovación under projects PID2020-115570GB-C22 MCIN/AEI/10.13039/50110 0 011033 and PID2023-147409NB-C21 MICIU/AEI/10.13039/50110 0 011033 , the C-ING-027-UGR23es_ES
dc.description.sponsorshipCátedra de Empresa Tecnología para las Personas (UGR-Fujitsu)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGroundnutes_ES
dc.subjectPeanutes_ES
dc.subjectDeep learninges_ES
dc.titleA novel groundnut leaf dataset for detection and classification of groundnut leaf diseaseses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.dib.2024.110763
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional