Afficher la notice abrégée

dc.contributor.advisorChiachío, Manuel
dc.contributor.authorBarros, José
dc.contributor.authorChiachío Ruano, Manuel 
dc.contributor.authorFernández, Juan
dc.contributor.authorMorillas Romero, Leandro 
dc.contributor.authorConsuegra, Joel
dc.date.accessioned2024-09-05T06:53:07Z
dc.date.available2024-09-05T06:53:07Z
dc.date.issued2024-03
dc.identifier.urihttps://hdl.handle.net/10481/93948
dc.description.abstractThis paper presents a novel experimental and theoretical methodology for the fragility assessment of masonry infilled frame structures subjected to seismic loads. The method uses a Hamiltonian Monte Carlo Bayesian Neural Network trained with laboratory tests, to obtain the constitutive parameters of a non-linear spring model that represents the masonry shear behaviour. The resulting model accounts for several types of masonry units, structural steel and reinforced concrete frames along with the effects of windows and/or doors openings. The results show that the use of deterministic models lead to poor estimations about the in-plane behaviour of the system, whereas the application of the proposed semi-empirical method results in more robust predictions according to the measured data. Also, the proposed approach is tested against two extra data-sets to evaluate its extrapolation capabilities, with satisfactory results. Moreover, the proposed method has been applied to an engineering case study which demonstrates that it can be efficiently applied to robustly assess the safety against collapse of MIF buildings. Finally, a discussion between the proposed method and the current structural standards is provided within the context of the case study.es_ES
dc.description.sponsorshipSeminario Permanente de Formación e Investigación en Ingeniería Civil y proyecto TAQ-I-KISRA (RTI2018-101841-B-C21)es_ES
dc.language.isoenges_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectMasonry infilled frameses_ES
dc.subjectBayesian neural networkses_ES
dc.subjectHamiltonian Monte-Carloes_ES
dc.subjectShear seismic responsees_ES
dc.subjectSafety assessmentes_ES
dc.titleA semi-empirical method for shear response modelling of masonry infilled frame structureses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-CompartirIgual 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-CompartirIgual 4.0 Internacional