Mostrar el registro sencillo del ítem

dc.contributor.authorCardoso, Ana Sofia
dc.contributor.authorMalta-Pinto, Eva
dc.contributor.authorTabik, Siham 
dc.contributor.authorAugust, Tom
dc.contributor.authorRoy, Helen E.
dc.contributor.authorCorreia, Ricardo
dc.contributor.authorVicente, Joana R.
dc.contributor.authorVaz, Ana Sofía
dc.date.accessioned2024-09-04T11:46:48Z
dc.date.available2024-09-04T11:46:48Z
dc.date.issued2024-04-12
dc.identifier.citationCardoso, A.S. et. al. 81 (2024) 102602. [https://doi.org/10.1016/j.ecoinf.2024.102602]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93944
dc.description.abstractDeep learning has advanced the content analysis of digital data, unlocking opportunities for detecting, mapping, and monitoring invasive species. Here, we tested the ability of open source classification and object detection models (i.e., convolutional neural networks: CNNs) to identify and map the invasive plant Cortaderia selloana (pampas grass) in mainland Portugal. CNNs were trained over citizen science images and then applied to social media content (from Flickr, Twitter, Instagram, and Facebook), allowing to classify or detect the species in over 77% of situations. Images where the species was identified were mapped, using their georeferenced coordinates and time stamp, showing previously unreported occurrences of C. selloana, and a tendency for the species expansion from 2019 to 2021. Our study shows great potential from deep learning, citizen science and social media data for the detection, mapping, and monitoring of invasive plants, and, by extension, for supporting follow-up management options.es_ES
dc.description.sponsorshipFCT – Portuguese Foundation for Science and Technology through the 2021 PhD Research Studentships (https://d oi.org/10.54499/2021.05426.BD)es_ES
dc.description.sponsorshipCitizen Science Initiative through the European Cooperation in Science and Technology (COST) Virtual Mobility Grant [grant no. ECOST- GRANT-CA17122-b65b7335]es_ES
dc.description.sponsorshipPortuguese Science Foundation – FCT – through the 2022 PhD Studentships [grant reference 2022.10833.BD]es_ES
dc.description.sponsorshipAcademy of Finland (Grant agreement #348352) and the KONE Foundation (Grant agreement #202101976)es_ES
dc.description.sponsorshipcontract DL57/2016/CP1440/CT0024. ASV acknowledges support from the FCT – Portuguese Foundation for Science and Technology through the program Stimulus for Scientific Employment – Individual Support (https://doi.org/10.54499/2020.01175.CEECIND/CP1601/CP1649/CT0006), and project ClimateMedia – Understanding climate change phenomena and impacts from digital technology and social media (https://doi.org/10.54499/2022.06965.PTDC).es_ES
dc.description.sponsorshipproject SmartFoRest (TED2021-129690B-I00), funded by MCIN/ AEI/10.13039/ 501100011033 and by the European UnionNextGenerationEU/ PRTR)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArtificial intelligence es_ES
dc.subjectConvolutional neural networkses_ES
dc.subjectComputer visiones_ES
dc.titleCan citizen science and social media images support the detection of new invasion sites? A deep learning test case with Cortaderia selloanaes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ecoinf.2024.102602
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional