Afficher la notice abrégée

dc.contributor.authorMorales Rodríguez, David
dc.contributor.authorP Cuéllar, Manuel
dc.contributor.authorMorales, Diego P.
dc.date.accessioned2024-09-04T10:28:53Z
dc.date.available2024-09-04T10:28:53Z
dc.date.issued2024-05-03
dc.identifier.citationRodríguez M, D. & Cuéllar P, M. & Morles P, D. 160 (2024) 111632. [https://doi.org/10.1016/j.asoc.2024.111632]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93919
dc.description.abstractIn the field of eXplainable Artificial Intelligence (XAI), the generation of interpretable models that are able to match the performance of state-of-the-art deep learning methods is one of the main challenges. In this work, we present a novel interpretable model for image classification that combines the power of deep convolutional networks and the transparency of decision trees. We explore different training techniques where convolutional networks and decision trees can be trained together using gradient-based optimization methods as usually done in deep learning environments. All of this results in a transparent model in which a soft decision tree makes the final classification based on human-understandable concepts that are extracted by a convolutional neural network. We tested the proposed solution on two challenge image classification datasets and compared them with the state-of-the-art approaches, achieving competitive results.es_ES
dc.description.sponsorshipHAT.tec GmbHes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSoft decision treeses_ES
dc.subjectConceptses_ES
dc.subjectXAIes_ES
dc.titleOn the fusion of soft-decision-trees and concept-based models✩es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.asoc.2024.111632
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional