Show simple item record

dc.contributor.authorMoreno Frías, María Ángeles
dc.contributor.authorRosales González, José Carlos 
dc.date.accessioned2024-09-04T07:27:08Z
dc.date.available2024-09-04T07:27:08Z
dc.date.issued2024-07-15
dc.identifier.citationMoreno Frías, M.A. & Rosales, J.C. Czech Math J (2024). [https://doi.org/10.21136/CMJ.2024.0379-23]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93872
dc.description.abstractLet S be a numerical semigroup. We say that h ∈ N\S is an isolated gap of S if {h−1, h+1} ⊆ S. A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m(S) the multiplicity of a numerical semigroup S. A covariety is a nonempty family C of numerical semigroups that fulfills the following conditions: there exists the minimum of C , the intersection of two elements of C is again an element of C , and S\{m(S)} ∈ C for all S ∈ C such that S 6= min(C ).We prove that the set P(F) = {S : S is a perfect numerical semigroup with Frobenius number F} is a covariety. Also, we describe three algorithms which compute: the set P(F), the maximal elements of P(F), and the elements of P(F) with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf(F) = {S : S is a Parf-numerical semigroup with Frobenius number F} and Psat(F) = {S : S is a Psat-numerical semigroup with Frobenius number F} are covarieties. As a consequence we present some algorithms to compute Parf(F) and Psat(F).es_ES
dc.description.sponsorshipProyecto de Excelencia de la Junta de Andalucía ProyExcel 00868 and Proyecto de investigación del Plan Propio–UCA 2022-2023 (PR2022-011)es_ES
dc.description.sponsorshipJunta de Andalucía group FQM-298 and Proyecto de investigación del Plan Propio–UCA 2022-2023 (PR2022-004)es_ES
dc.description.sponsorshipJunta de Andalucía group FQM-343es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectperfect numerical semigroupes_ES
dc.subjectsaturated numerical semigroupes_ES
dc.subjectArf numerical semigroupes_ES
dc.titleThe covariety of perfect numerical semigroups with fixed Frobenius numberes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.21136/CMJ.2024.0379-23
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional