Mostrar el registro sencillo del ítem

dc.contributor.authorChiachío Ruano, Juan 
dc.contributor.authorJalón Ramírez, María Lourdes 
dc.contributor.authorChiachío Ruano, Manuel 
dc.contributor.authorKolios, Athanasios
dc.date.accessioned2024-09-03T07:59:57Z
dc.date.available2024-09-03T07:59:57Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/10481/93809
dc.description.abstractThis paper presents a prognostics methodology to deal with complex degradation processes for which condition monitoring data constitute the only available source of physical information. The proposed methodology is general, but here it is illustrated and tested using a case study about fatigue crack propagation in metallic structures. The prognostics method relies on a stochastic damage model based on Markov chains, which is embedded within a sequential state estimation framework for remaining useful life prediction and time-dependent reliability estimation. As key contribution, the resulting prediction and updating equations are shown to be obtained as closed-form expressions, whereby analytical equations for the remaining useful life and time-dependent reliability are obtained as by-product. Original contributions to the model parameter inference and the minimum required amount of data for prognostics are also provided.es_ES
dc.language.isoenges_ES
dc.rightsAtribución-CompartirIgual 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectDamage diagnosticses_ES
dc.subjectMarkov Chainses_ES
dc.subjectSequential predictiones_ES
dc.subjecttime-dependent reliabilityes_ES
dc.subjectremaining useful lifees_ES
dc.titleA markov chains prognostics framework for complex degradation processeses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.ress.2019.106621
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-CompartirIgual 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-CompartirIgual 4.0 Internacional