Afficher la notice abrégée

dc.contributor.authorNavarro, Amparo
dc.contributor.authorRuiz-Arias, Alvaro 
dc.contributor.authorFueyo-Gonzalez, Francisco
dc.contributor.authorIzquierdo-Garcia, Carolina
dc.contributor.authorPeña-Ruiz, Tomás
dc.contributor.authorGutierrez-Rodriguez, Marta
dc.contributor.authorHerranz, Rosario
dc.contributor.authorCuerva, Juan M.
dc.contributor.authorGonzález-Vera, Juan A.
dc.contributor.authorOrte Gutiérrez, Ángel 
dc.date.accessioned2024-09-03T07:58:35Z
dc.date.available2024-09-03T07:58:35Z
dc.date.issued2024-08-03
dc.identifier.citationNavarro, A. et. al. 323 (2024 ) 124926. [https://doi.org/10.1016/j.saa.2024.124926]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93805
dc.description.abstractLanthanide photoluminescence (PL) emission has attracted much attention for technological and bioimaging applications because of its particularly interesting features, such as narrow emission bands and very long PL lifetimes. However, this emission process necessitates a preceding step of energy transfer from suitable antennas. While biocompatible applications require luminophores that are stable in aqueous media, most lanthanide-based emitters are quenched by water molecules. Previously, we described a small luminophore, 8-methoxy-2-oxo- 1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-phosphonic acid (PAnt), which is capable of dynamically coordinating with Tb(III) and Eu(III), and its exchangeable behavior improved their performance in PL lifetime imaging microscopy (PLIM) compared with conventional lanthanide cryptate imaging agents. Herein, we report an indepth photophysical and time-dependent density functional theory (TD–DFT) computational study that reveals different sensitization mechanisms for Eu(III) and Tb(III) in stable complexes formed in water. Understanding this unique behavior in aqueous media enables the exploration of different applications in bioimaging or novel emitting materials.es_ES
dc.description.sponsorshipPID2020-114256RB-I00 and PID2022-137214OB-C22 funded by Agencia Estatal de Investigacion (Spain) AEI/10.13039/501100011033es_ES
dc.description.sponsorshipP21_00212, A-FQM-386- UGR20 and 2021/00627/001-FEDER_UJA_2020 funded by FEDER/ Junta de Andalucía-Consejería de Universidad, Investigación e Innovación (Andalucía regional government, Spain)es_ES
dc.description.sponsorshipdiaRNAgnosis project funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101007934, CSIC (Spain) grant 202180E073, and PAIDIFQM- 337, Universidad de Jaén (Spain)es_ES
dc.description.sponsorshipUniversidad de Granada / CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLanthanideses_ES
dc.subjectDensity functional calculationses_ES
dc.subjectLuminescence es_ES
dc.titleMultiple pathways for lanthanide sensitization in self-assembled aqueous complexeses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.saa.2024.124926
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional