• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Lenguajes y Sistemas Informáticos
  • DLSI - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Lenguajes y Sistemas Informáticos
  • DLSI - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Overnights in Smart Villages: The Importance of Context Information

[PDF] Articulo principal (1.884Mo)
Identificadores
URI: https://hdl.handle.net/10481/93776
DOI: https://doi.org/10.1007/s13042-024-02337-7
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Bolaños Martinez, Daniel; Garrido Bullejos, José Luis; Bermúdez Edo, María del Campo
Editorial
Springer
Materia
Tourism forecasting
 
Sensors
 
Internet of Things
 
Machine learning
 
Date
2024-08-28
Referencia bibliográfica
Bolaños-Martinez, D., Garrido, J.L. & Bermudez-Edo, M. Predicting overnights in smart villages: the importance of context information. Int. J. Mach. Learn. & Cyber. (2024).
Résumé
The tourism industry increasingly employs sensors and machine learning for tasks such as demand prediction and mobility forecasting. However, some challenges in data collection remain, especially with information privacy and resource management. We propose a vehicle classification model based on License Plate Recognition (LPR) sensor data, incorporating contextual datasets not explored in the existing literature to predict the number of nights a vehicle will stay in a mountain tourist area. We also study the importance of each dataset in the results. Our analysis utilizes data from four LPR cameras spanning 17 months. We compare different classification models optimized through ensemble techniques. Additionally, an ablation study assesses the impact of each dataset, with variables categorized by expert knowledge into seasonal, socio-economic or visit-related. Optimal dataset selection demonstrates a 22.2% reduction in processing time and an 80% decrease in the number of variables, with only a slight decrease of 0.01 in the Area Under the Curve (AUC) compared to using all available variables. This research provides information to develop tourism prediction models, guiding which datasets and calculated variables are the most important while balancing the processing time and AUC.
Colecciones
  • DLSI - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire