Afficher la notice abrégée

dc.contributor.authorElghouat, Akram
dc.contributor.authorAlgouti, Ahmed
dc.contributor.authorAlgouti, Abdellah
dc.contributor.authorBaid, Soukaina
dc.contributor.authorEzzahzi, Salma
dc.contributor.authorKabili, Salma
dc.contributor.authorAgli, Saloua
dc.date.accessioned2024-07-31T10:44:36Z
dc.date.available2024-07-31T10:44:36Z
dc.date.issued2024-07-17
dc.identifier.citationElghouat, A. et. al. Journal of Water and Climate Change 2024; jwc2024726. [https://doi.org/10.2166/wcc.2024.726]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93699
dc.description.abstractFlash floods are highly destructive disasters, posing severe threats to lives and infrastructure. In this study, we conducted a comparative analysis of bivariate and multivariate statistical models and machine learning to predict flash flood susceptibility in the flood-prone Rheraya watershed. Six models were utilized, including frequency ratio (FR), logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost), K-nearest neighbors (KNN), and naïve Bayes (NB). We considered 12 flash flood conditioning variables, such as slope, elevation, distance to the river, and others, as independent variables and 246 flash flood inventory points recorded over the past 40 years as dependent variables in the modeling process. The area under the curve (AUC) of the receiver operating characteristic was used to validate and compare the performance of the models. The results indicated that distance to the river was the most contributing factor to flash floods in the study area. Moreover, the RF outperformed all the other models, achieving an AUC of 0.86, followed by XGBoost (AUC ¼ 0.85), LR (AUC¼ 0.83), NB (AUC¼ 0.76), KNN (AUC ¼ 0.75), and FR (AUC ¼ 0.72). The RF model effectively pinpoints highly susceptible zones, which is critical for establishing precise flash flood mitigation strategies within the region.es_ES
dc.language.isoenges_ES
dc.publisherIWA Publishinges_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectflash floodses_ES
dc.subjectfrequency ratioes_ES
dc.subjectGISes_ES
dc.titleIntegrated approaches for flash flood susceptibility mapping: spatial modeling and comparative analysis of statistical and machine learning models. A case study of the Rheraya watershed, Moroccoes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.2166/wcc.2024.726
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional