Afficher la notice abrégée

dc.contributor.authorArar Tahir, Kawakib
dc.contributor.authorOrdóñez García, Bonifacio Javier 
dc.contributor.authorNieto, Juanjo
dc.date.accessioned2024-07-31T09:31:28Z
dc.date.available2024-07-31T09:31:28Z
dc.date.issued2024-06-17
dc.identifier.citationArar Tahir, K. & Ordóñez, J. & Nieto, J. Sustainability 2024, 16, 5156. [https://doi.org/10.3390/su16125156]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93685
dc.description.abstractHybrid energy systems (HESs) integrate renewable sources, storage, and optionally conventional energies, offering a sustainable alternative to fossil fuels. Microgrids (MGs) bolster this integration, enhancing energy management, resilience, and reliability across different levels. This study, emphasizing the need for refined optimization methods, investigates three themes: renewable energy, microgrid, and multiobjective optimization (MOO), through a bibliometric analysis of 470 Scopus documents from 2010 to 2023, analyzed using SciMAT v1.1.04 software. It segments the research into two periods, 2010–2019 and 2020–2023, revealing a surge in MOO focus, particularly in the latter period, with a 35% increase in MOO-related research. This indicates a shift toward comprehensive energy ecosystem management that balances environmental, technical, and economic elements. The initial focus on MOO, genetic algorithms, and energy management systems has expanded to include smart grids and electric power systems, with MOO remaining a primary theme in the second period. The increased application of artificial intelligence (AI) in optimizing HMGS within the MOO framework signals a move toward more sustainable, intelligent energy solutions. Despite progress, challenges remain, including high battery costs, the need for reliable MOO data, the intermittency of renewable energy sources, and HMGS network scalability issues, highlighting directions for future research.es_ES
dc.description.sponsorshipC-ING-288-UGR23 funded by Consejería de Universidad, Investigación e Innovación and by ERDF Andalusia Program 2021–2027es_ES
dc.description.sponsorshipWasit Province, Iraqes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectrenewable energy sources es_ES
dc.subjecthybrid energy systemes_ES
dc.subjectmicrogrides_ES
dc.titleExploring Evolution and Trends: A Bibliometric Analysis and Scientific Mapping of Multiobjective Optimization Applied to Hybrid Microgrid Systemses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/su16125156
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional