Mostrar el registro sencillo del ítem
Interpretable Feature Learning in Multivariate Big Data Analysis for Network Monitoring
dc.contributor.author | Camacho Páez, José | |
dc.contributor.author | Wasielewska, Katarzyna | |
dc.contributor.author | Bro, Rasmus | |
dc.contributor.author | Kotz, David | |
dc.date.accessioned | 2024-07-31T07:33:59Z | |
dc.date.available | 2024-07-31T07:33:59Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | J. Camacho, K. Wasielewska, R. Bro and D. Kotz, "Interpretable Feature Learning in Multivariate Big Data Analysis for Network Monitoring," in IEEE Transactions on Network and Service Management, vol. 21, no. 3, pp. 2926-2943, June 2024, doi: 10.1109/TNSM.2024.3368501. keywords: {Data models;Analytical models;Monitoring;Big Data;Representation learning;Principal component analysis;Data visualization;Interpretable machine learning;multivariate big data analysis;anomaly detection;big data;UGR’16;dartmouth campus Wi-Fi;network monitoring}, | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/93666 | |
dc.description.abstract | There is an increasing interest in the development of new data-driven models useful to assess the performance of communication networks. For many applications, like network monitoring and troubleshooting, a data model is of little use if it cannot be interpreted by a human operator. In this paper, we present an extension of the Multivariate Big Data Analysis (MBDA) methodology, a recently proposed interpretable data analysis tool. In this extension, we propose a solution to the automatic derivation of features, a cornerstone step for the application of MBDA when the amount of data is massive. The resulting network monitoring approach allows us to detect and diagnose disparate network anomalies, with a data-analysis workflow that combines the advantages of interpretable and interactive models with the power of parallel processing. We apply the extended MBDA to two case studies: UGR’16, a benchmark flow-based real-traffic dataset for anomaly detection, and Dartmouth’18, the longest and largest Wi-Fi trace known to date. | es_ES |
dc.description.sponsorship | 10.13039/100000001-US National Science Foundation (Grant Number: 0454062) Agencia Estatal de Investigación in Spain (Grant Number: PID2020-113462RBI00) 10.13039/100010665-European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (Grant Number: 893146) Universidad de Granada/CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE | es_ES |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | es_ES |
dc.subject | Data models | es_ES |
dc.subject | Analytical models | es_ES |
dc.subject | Monitoring | es_ES |
dc.subject | Big Data | es_ES |
dc.subject | Representation learning | es_ES |
dc.subject | Principal component analysis | es_ES |
dc.subject | Data visualization | es_ES |
dc.title | Interpretable Feature Learning in Multivariate Big Data Analysis for Network Monitoring | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1109/TNSM.2024.3368501 |