Mostrar el registro sencillo del ítem

dc.contributor.authorCamacho Páez, José 
dc.contributor.authorWasielewska, Katarzyna
dc.contributor.authorBro, Rasmus
dc.contributor.authorKotz, David
dc.date.accessioned2024-07-31T07:33:59Z
dc.date.available2024-07-31T07:33:59Z
dc.date.issued2024
dc.identifier.citationJ. Camacho, K. Wasielewska, R. Bro and D. Kotz, "Interpretable Feature Learning in Multivariate Big Data Analysis for Network Monitoring," in IEEE Transactions on Network and Service Management, vol. 21, no. 3, pp. 2926-2943, June 2024, doi: 10.1109/TNSM.2024.3368501. keywords: {Data models;Analytical models;Monitoring;Big Data;Representation learning;Principal component analysis;Data visualization;Interpretable machine learning;multivariate big data analysis;anomaly detection;big data;UGR’16;dartmouth campus Wi-Fi;network monitoring},es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93666
dc.description.abstractThere is an increasing interest in the development of new data-driven models useful to assess the performance of communication networks. For many applications, like network monitoring and troubleshooting, a data model is of little use if it cannot be interpreted by a human operator. In this paper, we present an extension of the Multivariate Big Data Analysis (MBDA) methodology, a recently proposed interpretable data analysis tool. In this extension, we propose a solution to the automatic derivation of features, a cornerstone step for the application of MBDA when the amount of data is massive. The resulting network monitoring approach allows us to detect and diagnose disparate network anomalies, with a data-analysis workflow that combines the advantages of interpretable and interactive models with the power of parallel processing. We apply the extended MBDA to two case studies: UGR’16, a benchmark flow-based real-traffic dataset for anomaly detection, and Dartmouth’18, the longest and largest Wi-Fi trace known to date.es_ES
dc.description.sponsorship10.13039/100000001-US National Science Foundation (Grant Number: 0454062) Agencia Estatal de Investigación in Spain (Grant Number: PID2020-113462RBI00) 10.13039/100010665-European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (Grant Number: 893146) Universidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectData modelses_ES
dc.subjectAnalytical modelses_ES
dc.subjectMonitoringes_ES
dc.subjectBig Dataes_ES
dc.subjectRepresentation learninges_ES
dc.subjectPrincipal component analysises_ES
dc.subjectData visualizationes_ES
dc.titleInterpretable Feature Learning in Multivariate Big Data Analysis for Network Monitoringes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TNSM.2024.3368501


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License