Shortcuts of Freely Relaxing Systems Using Equilibrium Physical Observables
Metadatos
Mostrar el registro completo del ítemAutor
González-Adalid Pemartín, Isidoro; Mompó, Emanuel; Lasanta Becerra, Antonio; Martín-Mayor, Víctor; Rodríguez Salas, Antonio JesúsEditorial
American Physical Society
Fecha
2024-03-15Referencia bibliográfica
González-Adalid Pemartín, I. et. al. Phys. Rev. Lett. 132, 117102. [https://doi.org/10.1103/PhysRevLett.132.117102]
Patrocinador
No. PID2022-136374NB-C21, No. PID2021-128970OAI00, No. PID2020–116567 GB-C22, No. FIS2017-84440- C2-2-P, and No. MTM2017-84446-C2-2-R funded by Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación 10.13039/501100011033, by “ERDFAway of making Europe,”; FEDER/Junta de Andalucía Consejería de Universidad, Investigación e Innovación; European Union, through Grants No. A-FQM-644- UGR20, and No. C-EXP-251-UGR23; Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23); V PRICIT (Regional Programme of Research and Technological Innovation); Ministerio de Ciencia, Innovación y Universidades (MCIU, Spain) through FPU Grant No. FPU18/02665Resumen
Many systems, when initially placed far from equilibrium, exhibit surprising behavior in their attempt
to equilibrate. Striking examples are the Mpemba effect and the cooling-heating asymmetry. These
anomalous behaviors can be exploited to shorten the time needed to cool down (or heat up) a system.
Though, a strategy to design these effects in mesoscopic systems is missing.We bring forward a description
that allows us to formulate such strategies, and, along the way, makes natural these paradoxical behaviors.
In particular, we study the evolution of macroscopic physical observables of systems freely relaxing under
the influence of one or two instantaneous thermal quenches. The two crucial ingredients in our approach
are timescale separation and a nonmonotonic temperature evolution of an important state function.
We argue that both are generic features near a first-order transition. Our theory is exemplified with the
one-dimensional Ising model in a magnetic field using analytic results and numerical experiments.





