Afficher la notice abrégée

dc.contributor.authorDamaševǐcius, Robertas
dc.contributor.authorKumar Jagatheesaperumal, Senthil
dc.contributor.authorN. V. P. S. Kandala, Rajesh
dc.contributor.authorHussain, Sadiq
dc.contributor.authorAlizadehsani, Roohallah
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.date.accessioned2024-07-30T11:03:01Z
dc.date.available2024-07-30T11:03:01Z
dc.date.issued2024-06-18
dc.identifier.citationDamaševǐcius, R. et. al. Computational Intelligence. 2024;40(3):e12682. [https://doi.org/10.1111/coin.12682]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93642
dc.description.abstractPersonalized health monitoring and prediction are indispensable in advancing healthcare delivery, particularly amidst the escalating prevalence of chronic illnesses and the aging population. Deep learning (DL) stands out as a promising avenue for crafting personalized health monitoring systems adept at forecasting health outcomes with precision and efficiency. As personal health data becomes increasingly accessible, DL-based methodologies offer a compelling strategy for enhancing healthcare provision through accurate and timely prognostications of health conditions. This article offers a comprehensive examination of recent advancements in employing DL for personalized health monitoring and prediction. It summarizes a diverse range of DL architectures and their practical implementations across various realms, such as wearable technologies, electronic health records (EHRs), and data accumulated from social media platforms. Moreover, it elucidates the obstacles encountered and outlines future directions in leveraging DL for personalized health monitoring, thereby furnishing invaluable insights into the immense potential of DL in this domain.es_ES
dc.language.isoenges_ES
dc.publisherWiley Online Libraryes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectdeep learninges_ES
dc.subjecthealthcarees_ES
dc.subjectpersonalized healthes_ES
dc.titleDeep learning for personalized health monitoring and prediction: A reviewes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1111/coin.12682
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional