dc.contributor.author | Saou, Abdelmonaim | |
dc.contributor.author | Sbibih, Driss | |
dc.contributor.author | Tahrichi, Mohamed | |
dc.contributor.author | Barrera Rosillo, Domingo | |
dc.date.accessioned | 2024-07-29T11:25:43Z | |
dc.date.available | 2024-07-29T11:25:43Z | |
dc.date.issued | 2024-05-21 | |
dc.identifier.citation | Saou, A., Sbibih, D., Tahrichi, M., & Barrera, D. (2024). Spline quasi-interpolation numerical methods for integro-differential equations with weakly singular kernels. Mathematical Modelling and Analysis, 29(3), 442–459. https://doi.org/10.3846/mma.2024.18832 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/93586 | |
dc.description.abstract | In this work, we introduce a numerical approach that utilizes spline
quasi-interpolation operators over a bounded interval. This method is designed to
provide a numerical solution for a class of Fredholm integro-differential equations
with weakly singular kernels. We outline the computational components involved in
determining the approximate solution and provide theoretical findings regarding the
convergence rate. This convergence rate is analyzed in relation to both the degree of
the quasi-interpolant and the grading exponent of the graded grid partition. Finally,
we present numerical experiments that validate the theoretical findings. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Taylor & Francis Group | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Quasi-interpolation operators | es_ES |
dc.subject | Numerical methods | es_ES |
dc.subject | Fredholm integro-differential equations | es_ES |
dc.title | Spline Quasi-Interpolation Numerical Methods for Integro-Differential Equations with Weakly Singular Kernels | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3846/mma.2024.18832 | |
dc.type.hasVersion | VoR | es_ES |