Mostrar el registro sencillo del ítem
First Search for Dark-Trident Processes Using the MicroBooNE Detector
dc.contributor.author | Abratenko, P. | |
dc.contributor.author | García Gámez, Diego | |
dc.contributor.author | Microboone Collaboration, / | |
dc.date.accessioned | 2024-07-29T10:57:03Z | |
dc.date.available | 2024-07-29T10:57:03Z | |
dc.date.issued | 2024-06-11 | |
dc.identifier.citation | Abratenko, P. et. al. Phys. Rev. Lett. 132, 241801. [https://doi.org/10.1103/PhysRevLett.132.241801] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/93576 | |
dc.description.abstract | We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding to 7.2×1020 protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produce 𝜋��0 and 𝜂�� mesons, which could decay into dark-matter (DM) particles mediated via a dark photon 𝐴��′. A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its imagelike reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level on the squared kinematic mixing parameter 𝜖��2 as a function of the dark-photon mass in the range 10≤𝑀��𝐴��′≤400 MeV. The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particles 𝜒�� for two benchmark models with mass ratios 𝑀��𝜒��/𝑀��𝐴��′=0.6 and 2 and for dark fine-structure constants 0.1≤𝛼��𝐷��≤1. | es_ES |
dc.description.sponsorship | MicroBooNE | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | APS125 | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | First Search for Dark-Trident Processes Using the MicroBooNE Detector | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1103/PhysRevLett.132.241801 | |
dc.type.hasVersion | VoR | es_ES |