| dc.contributor.author | Acampora, Giovanni | |
| dc.contributor.author | Cano Gutiérrez, Carlos | |
| dc.contributor.author | Chiatto, Angela | |
| dc.contributor.author | Soto Hidalgo, José Manuel | |
| dc.contributor.author | Vitiello, Autilia | |
| dc.date.accessioned | 2024-07-29T10:17:06Z | |
| dc.date.available | 2024-07-29T10:17:06Z | |
| dc.date.issued | 2024-05-09 | |
| dc.identifier.citation | Acampora, Giovanni, et al. EVOVAQ: EVOlutionary algorithms-based toolbox for VAriational Quantum circuits. SoftwareX 26 (2024) 101756 [10.1016/j.softx.2024.101756] | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/93556 | |
| dc.description.abstract | Evolutionary Algorithms (EAs) are becoming increasingly popular for training Variational Quantum Circuits
(VQCs) due to their ability to conserve quantum resources. However, there is currently a lack of user-friendly
tools for implementing this approach. To address this issue, this paper proposes EVOVAQ, a Python-based
framework designed to simplify the use of EAs for training VQCs. EVOVAQ seamlessly integrates evolutionary
computation with quantum libraries such as Qiskit, making it easy to use for both quantum computing and EAs
communities. Furthermore, EVOVAQ’s scalability enables the development of customized solutions, promoting
innovation in the quantum computing field. | es_ES |
| dc.description.sponsorship | IEEE Computational Intelligence
Society Graduate Student Research Grant | es_ES |
| dc.description.sponsorship | PID2021-128970OA-I00 funded
by MCIN/AEI/10.13039/501100011033/FEDER | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights | Atribución-NoComercial 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
| dc.subject | Evolutionary algorithms | es_ES |
| dc.subject | Python package | es_ES |
| dc.subject | Quantum computing | es_ES |
| dc.title | EVOVAQ: EVOlutionary algorithms-based toolbox for VAriational Quantum circuits | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.1016/j.softx.2024.101756 | |
| dc.type.hasVersion | VoR | es_ES |