Mostrar el registro sencillo del ítem

dc.contributor.authorAbel, Steve
dc.contributor.authorCriado, Juan Carlos
dc.contributor.authorSpannowsky, Michael
dc.date.accessioned2024-07-29T10:07:54Z
dc.date.available2024-07-29T10:07:54Z
dc.date.issued2024-06-21
dc.identifier.citationAbel, S. & Criado, J.C. & Spannowsky, M. Front. Artif. Intell. 7:1368569. [https://doi.org/10.3389/frai.2024.1368569]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93536
dc.description.abstractThe training of neural networks (NNs) is a computationally intensive task requiring significant time and resources. This article presents a novel approach to NN training using adiabatic quantum computing (AQC), a paradigm that leverages the principles of adiabatic evolution to solve optimization problems. We propose a universal AQC method that can be implemented on gate quantum computers, allowing for a broad range of Hamiltonians and thus enabling the training of expressive neural networks. We apply this approach to various neural networks with continuous, discrete, and binary weights. The study results indicate that AQC can very efficiently evaluate the global minimum of the loss function, offering a promising alternative to classical training methods.es_ES
dc.description.sponsorshipSTFC under grant ST/P001246/1es_ES
dc.description.sponsorshipCern Associateshipes_ES
dc.description.sponsorshipRYC2021-030842-I funded byMCIN/AEI/ 10.13039/501100011033es_ES
dc.description.sponsorshipNextGenerationEU/PRTRes_ES
dc.language.isoenges_ES
dc.publisherFrontierses_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectadiabatic quantum computinges_ES
dc.subjectquantum computinges_ES
dc.subjectneural networkses_ES
dc.titleTraining neural networks with universal adiabatic quantum computinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3389/frai.2024.1368569
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional