Mostrar el registro sencillo del ítem

dc.contributor.authorMillán Vidal, Ana P.
dc.contributor.authorC. W. van Straaten, Elisabeth
dc.contributor.authorJ. Stam, Cornelis
dc.contributor.authorA. Nissen, Ida
dc.contributor.authorIdema, Ida
dc.contributor.authorVan Mieghem, Piet
dc.contributor.authorHillebrand, Arjan
dc.date.accessioned2024-07-26T09:49:04Z
dc.date.available2024-07-26T09:49:04Z
dc.date.issued2024-07-01
dc.identifier.citationP. Millán, Ana. et. al. Network Neuroscience, 8(2), 437–465. [https://doi.org/10.1162/netn_a_00361]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93510
dc.description.abstractEpilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but up to 50% of patients continue to have seizures one year after the resection. In order to aid presurgical planning and predict postsurgical outcome on a patient-by-patient basis, we developed a framework of individualized computational models that combines epidemic spreading with patient-specific connectivity and epileptogeneity maps: the Epidemic Spreading Seizure and Epilepsy Surgery framework (ESSES). ESSES parameters were fitted in a retrospective study (N = 15) to reproduce invasive electroencephalography (iEEG)-recorded seizures. ESSES reproduced the iEEG-recorded seizures, and significantly better so for patients with good (seizure-free, SF) than bad (nonseizure-free, NSF) outcome. We illustrate here the clinical applicability of ESSES with a pseudo-prospective study (N = 34) with a blind setting (to the resection strategy and surgical outcome) that emulated presurgical conditions. By setting the model parameters in the retrospective study, ESSES could be applied also to patients without iEEG data. ESSES could predict the chances of good outcome after any resection by finding patient-specific model-based optimal resection strategies, which we found to be smaller for SF than NSF patients, suggesting an intrinsic difference in the network organization or presurgical evaluation results of NSF patients. The actual surgical plan overlapped more with the modelbased optimal resection, and had a larger effect in decreasing modeled seizure propagation, for SF patients than for NSF patients. Overall, ESSES could correctly predict 75% of NSF and 80.8% of SF cases pseudo-prospectively. Our results show that individualised computational models may inform surgical planning by suggesting alternative resections and providing information on the likelihood of a good outcome after a proposed resection. This is the first time that such a model is validated with a fully independent cohort and without the need for iEEG recordings.es_ES
dc.description.sponsorshipH2020 European Research Counciles_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidadeses_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación Award ID: PID2020-113681GB-I00es_ES
dc.language.isoenges_ES
dc.publisherMIT Press Directes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEpilepsy surgeryes_ES
dc.subjectLarge-scale brain networkes_ES
dc.subjectEpilepsy es_ES
dc.titleIndividualized epidemic spreading models predict epilepsy surgery outcomes: A pseudo-prospective studyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1162/netn_a_00361
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional