Afficher la notice abrégée

dc.contributor.authorGallego Molina, Nicolás J.
dc.contributor.authorOrtiz, Andrés
dc.contributor.authorArco, Juan E.
dc.contributor.authorMartinez‑Murcia, Francisco J.
dc.contributor.authorLok Woo, Wai
dc.date.accessioned2024-07-26T08:34:20Z
dc.date.available2024-07-26T08:34:20Z
dc.date.issued2024-07-02
dc.identifier.citationGallego Molina, N.J. et. al. Interdiscip Sci Comput Life Sci (2024). [https://doi.org/10.1007/s12539-024-00634-x]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93503
dc.description.abstractThe electrical activity of the neural processes involved in cognitive functions is captured in EEG signals, allowing the exploration of the integration and coordination of neuronal oscillations across multiple spatiotemporal scales. We have proposed a novel approach that combines the transformation of EEG signal into image sequences, considering cross-frequency phase synchronisation (CFS) dynamics involved in low-level auditory processing, with the development of a two-stage deep learning model for the detection of developmental dyslexia (DD). This deep learning model exploits spatial and temporal information preserved in the image sequences to find discriminative patterns of phase synchronisation over time achieving a balanced accuracy of up to 83%. This result supports the existence of differential brain synchronisation dynamics between typical and dyslexic seven-year-old readers. Furthermore, we have obtained interpretable representations using a novel feature mask to link the most relevant regions during classification with the cognitive processes attributed to normal reading and those corresponding to compensatory mechanisms found in dyslexia.es_ES
dc.description.sponsorshipPID2022-137461NBC32, PID2022-137629OA-I00 and PID2022-137451OB-I00 projects, funded by MICIU/AEI/10.13039/501100011033 and by ERDF/ EU as well as UMA20-FEDERJA-086 (Consejería de econnomía y conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF), and the University of Málaga (UMA), BioSiP (TIC-251) research groupes_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 funded by MICIU/ AEI/10.13039/501100011033 and by European Union NextGenerationEU/ PRTRes_ES
dc.description.sponsorshipUniversidad de Málaga/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCross-frequency couplinges_ES
dc.subjectBrain synchronisation dynamicses_ES
dc.subjectExplainabilityes_ES
dc.titleUnraveling Brain Synchronisation Dynamics by Explainable Neural Networks using EEG Signals: Application to Dyslexia Diagnosises_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s12539-024-00634-x
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional