Afficher la notice abrégée

dc.contributor.authorFerri García, Ramón 
dc.contributor.authorRueda Sánchez, Jorge L.
dc.contributor.authorRueda García, María Del Mar 
dc.contributor.authorCobo, Beatriz
dc.date.accessioned2024-07-25T09:52:50Z
dc.date.available2024-07-25T09:52:50Z
dc.date.issued2024-06-22
dc.identifier.citationFerri García, R. et. al. 225 (2024) 779–793. [https://doi.org/10.1016/j.matcom.2024.06.012]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93469
dc.description.abstractPropensity Score Adjustment (PSA) is a widely accepted method to reduce selection bias in nonprobability samples. In this approach, the (unknown) response probability of each individual is estimated in a nonprobability sample, using a reference probability sample. This, the researcher obtains a representation of the target population, reflecting the differences (for a set of auxiliary variables) between the population and the nonprobability sample, from which response probabilities can be estimated. Auxiliary probability samples are usually produced by surveys with complex sampling designs, meaning that the use of design weights is crucial to accurately calculate response probabilities. When a linear model is used for this task, maximising a pseudo log-likelihood function which involves design weights provides consistent estimates for the inverse probability weighting estimator. However, little is known about how design weights may benefit the estimates when techniques such as machine learning classifiers are used. This study aims to investigate the behaviour of Propensity Score Adjustment with machine learning classifiers, subject to the use of weights in the modelling step. A theoretical approximation to the problem is presented, together with a simulation study highlighting the properties of estimators using different types of weights in the propensity modelling step.es_ES
dc.description.sponsorshipPDC2022-133293-I00 funded by MCIN/AEI/10.13039/501100011033 and the European Union ‘‘NextGenerationEU’’/PRTRes_ES
dc.description.sponsorshipConsejería de Universidad, Investigación e Innovación (C-EXP-153-UGR23, Andalusia, Spain), Plan Propio de Investigación 𝑦���� Transferencia (PPJIA2023-030, University of Granada)es_ES
dc.description.sponsorshipIMAG-Maria de Maeztu CEX2020-001105-M/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipMinisterio de Educación 𝑦�� Ciencia (PRE2022-103200) associated with the aforementioned IMAG-Mariaes_ES
dc.description.sponsorshipUniversidad de Granada / CBUA.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPropensity score adjustmentes_ES
dc.subjectDesign weightses_ES
dc.subjectNonprobability sampleses_ES
dc.titleEstimating response propensities in nonprobability surveys using machine learning weighted modelses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.matcom.2024.06.012
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional