| dc.contributor.author | Grenier, Christian | |
| dc.contributor.author | Griesshaber, Erika | |
| dc.contributor.author | Schmahl, Wolfgang W. | |
| dc.contributor.author | Berning, Björn | |
| dc.contributor.author | Checa González, Antonio G. | |
| dc.date.accessioned | 2024-07-24T10:27:10Z | |
| dc.date.available | 2024-07-24T10:27:10Z | |
| dc.date.issued | 2024-06-07 | |
| dc.identifier.citation | Grenier, C. et. al. Mar Life Sci Technol (2024). [https://doi.org/10.1007/s42995-024-00233-1] | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/93445 | |
| dc.description.abstract | Gymnolaemata bryozoans produce CaCO3
skeletons of either calcite, aragonite, or both. Despite extensive research, their
crystallography and biomineralization patterns remain unclear. We present a detailed study of the microstructures, mineralogy,
and crystallography of eight extant cheilostome species using scanning electron microscopy, electron backscatter
diffraction, atomic force microscopy, and micro-computed tomography. We distinguished five basic microstructures, three
calcitic (tabular, irregularly platy, and granular), and two aragonitic (granular-platy and fibrous). The calcitic microstructures
consist of crystal aggregates that transition from tabular or irregularly platy to granular assemblies. Fibrous aragonite
consists of fibers arranged into spherulites. In all cases, the crystallographic textures are axial, and stronger in aragonite
than in calcite, with the c-axis as the fiber axis. We reconstruct the biomineralization sequence in the different species by
considering the distribution and morphology of the growth fronts of crystals and the location of the secretory epithelium.
In bimineralic species, calcite formation always predates aragonite formation. In interior compound walls, growth proceeds
from the cuticle toward the zooecium interior. We conclude that, with the exception of tabular calcite, biomineralization is
remote and occurs within a relatively wide extrapallial space, which is consistent with the inorganic-like appearance of the
microstructures. This biomineralization mode is rare among invertebrates. | es_ES |
| dc.description.sponsorship | MCIN/AEI/10.13039/501100011033 | es_ES |
| dc.description.sponsorship | PCM 00092 (Consejería de Economía, Innovación,
Ciencia y Empleo, Junta de Andalucía) | es_ES |
| dc.description.sponsorship | Research Group
RNM363 (latter institution) | es_ES |
| dc.description.sponsorship | Unidad Científica de Excelencia
UCE-PP2016-05 (University of Granada) | es_ES |
| dc.description.sponsorship | Projects CGL2017-85118-P, PID2020116660GB-I00 Spanish Ministry of Science and Innovation | es_ES |
| dc.description.sponsorship | “FEDER Una manera de hacer Europa” | es_ES |
| dc.description.sponsorship | Universidad de Granada/Consorcio de Bibliotecas Universitarias de Andalucía (CBUA) | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Biomineralization | es_ES |
| dc.subject | Bryozoan | es_ES |
| dc.subject | Skeleton | es_ES |
| dc.title | Skeletal microstructures of cheilostome bryozoans (phylum Bryozoa, class Gymnolaemata): crystallography and secretion patterns | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.1007/s42995-024-00233-1 | |
| dc.type.hasVersion | VoR | es_ES |