Afficher la notice abrégée

dc.contributor.authorGrenier, Christian
dc.contributor.authorGriesshaber, Erika
dc.contributor.authorSchmahl, Wolfgang W.
dc.contributor.authorBerning, Björn
dc.contributor.authorCheca González, Antonio G. 
dc.date.accessioned2024-07-24T10:27:10Z
dc.date.available2024-07-24T10:27:10Z
dc.date.issued2024-06-07
dc.identifier.citationGrenier, C. et. al. Mar Life Sci Technol (2024). [https://doi.org/10.1007/s42995-024-00233-1]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93445
dc.description.abstractGymnolaemata bryozoans produce CaCO3 skeletons of either calcite, aragonite, or both. Despite extensive research, their crystallography and biomineralization patterns remain unclear. We present a detailed study of the microstructures, mineralogy, and crystallography of eight extant cheilostome species using scanning electron microscopy, electron backscatter diffraction, atomic force microscopy, and micro-computed tomography. We distinguished five basic microstructures, three calcitic (tabular, irregularly platy, and granular), and two aragonitic (granular-platy and fibrous). The calcitic microstructures consist of crystal aggregates that transition from tabular or irregularly platy to granular assemblies. Fibrous aragonite consists of fibers arranged into spherulites. In all cases, the crystallographic textures are axial, and stronger in aragonite than in calcite, with the c-axis as the fiber axis. We reconstruct the biomineralization sequence in the different species by considering the distribution and morphology of the growth fronts of crystals and the location of the secretory epithelium. In bimineralic species, calcite formation always predates aragonite formation. In interior compound walls, growth proceeds from the cuticle toward the zooecium interior. We conclude that, with the exception of tabular calcite, biomineralization is remote and occurs within a relatively wide extrapallial space, which is consistent with the inorganic-like appearance of the microstructures. This biomineralization mode is rare among invertebrates.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipPCM 00092 (Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía)es_ES
dc.description.sponsorshipResearch Group RNM363 (latter institution)es_ES
dc.description.sponsorshipUnidad Científica de Excelencia UCE-PP2016-05 (University of Granada)es_ES
dc.description.sponsorshipProjects CGL2017-85118-P, PID2020116660GB-I00 Spanish Ministry of Science and Innovationes_ES
dc.description.sponsorship“FEDER Una manera de hacer Europa”es_ES
dc.description.sponsorshipUniversidad de Granada/Consorcio de Bibliotecas Universitarias de Andalucía (CBUA)es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBiomineralizationes_ES
dc.subjectBryozoanes_ES
dc.subjectSkeletones_ES
dc.titleSkeletal microstructures of cheilostome bryozoans (phylum Bryozoa, class Gymnolaemata): crystallography and secretion patternses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s42995-024-00233-1
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional