Mostrar el registro sencillo del ítem

dc.contributor.authorMorcillo Jiménez, Roberto
dc.contributor.authorMesa, Jesús
dc.contributor.authorGómez-Romero, Juan 
dc.contributor.authorVila, M. Amparo
dc.contributor.authorMartín Bautista, María José 
dc.date.accessioned2024-07-23T11:10:08Z
dc.date.available2024-07-23T11:10:08Z
dc.date.issued2024-05-01
dc.identifier.citationMorcillo-Jimenez, R., Mesa, J., Gómez-Romero, J. et al. Deep learning for prediction of energy consumption: an applied use case in an office building. Appl Intell 54, 5813–5825 (2024). [https://doi.org/10.1007/s10489-024-05451-9]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93404
dc.description.abstractNon-residential buildings are responsible for more than a third of global energy consumption. Estimating building energy consumption is the first step towards identifying inefficiencies and optimizing energy management policies. This paper presents a study of Deep Learning techniques for time series analysis applied to building energy prediction with real environments. We collected multisource sensor data from an actual office building under normal operating conditions, pre-processed them, and performed a comprehensive evaluation of the accuracy of feed-forward and recurrent neural networks to predict energy consumption. The results show that memory-based architectures (LSTMs) perform better than stateless ones (MLPs) even without data aggregation (CNNs), although the lack of ample usable data in this type of problem avoids making the most of recent techniques such as sequence-to-sequence (Seq2Seq).es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTRthrough the IA4TESproject (MIA.2021.M04. 0008)es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 through the SINERGYproject (PID2021.125537NA.I00)es_ES
dc.description.sponsorshipbyERDF/Junta deAndalucía through the D3S project (P21.00247)es_ES
dc.description.sponsorshipFEDER programme 2014- 2020 (B-TIC-145-UGR18 and P18-RT-1765)es_ES
dc.description.sponsorshipEuropean Union (Energy IN TIME EeB.NMP.2013-4, No. 608981)es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBuildings es_ES
dc.subjectEnergy consumption forecastinges_ES
dc.subjectTime serieses_ES
dc.titleDeep learning for prediction of energy consumption: an applied use case in an office buildinges_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/NextGenerationEU/MIA.2021.M04.0008es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s10489-024-05451-9
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional