Afficher la notice abrégée

dc.contributor.authorEtayo Escanilla, Miguel
dc.contributor.authorCampillo, Noelia
dc.contributor.authorÁvila-Fernández, Paula
dc.contributor.authorBaena, José Manuel
dc.contributor.authorChato Astrain, Jesús 
dc.contributor.authorCampos Sánchez, Fernando 
dc.contributor.authorSanchez Porras, David 
dc.contributor.authorGarcía García, Oscar Darío 
dc.contributor.authorCarriel Araya, Víctor 
dc.date.accessioned2024-07-23T09:51:47Z
dc.date.available2024-07-23T09:51:47Z
dc.date.issued2024-05-17
dc.identifier.citationEtayo Escanilla, M. et. al. Polymers 2024, 16, 1426. [https://doi.org/10.3390/polym16101426]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93394
dc.description.abstractNervous system traumatic injuries are prevalent in our society, with a significant socioeconomic impact. Due to the highly complex structure of the neural tissue, the treatment of these injuries is still a challenge. Recently, 3D printing has emerged as a promising alternative for producing biomimetic scaffolds, which can lead to the restoration of neural tissue function. The objective of this work was to compare different biomaterials for generating 3D-printed scaffolds for use in neural tissue engineering. For this purpose, four thermoplastic biomaterials, ((polylactic acid) (PLA), polycaprolactone (PCL), Filaflex (FF) (assessed here for the first time for biomedical purposes), and Flexdym (FD)) and gelatin methacrylate (GelMA) hydrogel were subjected to printability and mechanical tests, in vitro cell–biomaterial interaction analyses, and in vivo biocompatibility assessment. The thermoplastics showed superior printing results in terms of resolution and shape fidelity, whereas FD and GelMA revealed great viscoelastic properties. GelMA demonstrated a greater cell viability index after 7 days of in vitro cell culture. Moreover, all groups displayed connective tissue encapsulation, with some inflammatory cells around the scaffolds after 10 days of in vivo implantation. Future studies will determine the usefulness and in vivo therapeutic efficacy of novel neural substitutes based on the use of these 3D-printed scaffolds.es_ES
dc.description.sponsorshipSpanish “Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica” (I+D+i) of the Ministry of Science and Innovation of Spain (Instituto de Salud Carlos III)es_ES
dc.description.sponsorshipFEDER funds (European Union) (Grants FIS PI20/00318, PI23/00337)es_ES
dc.description.sponsorship“Proyectos de colaboración público-privada, Plan de Investigación Científica, Técnica y de innovación 2021– 2023 (MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipEuropean Union-NextGenerationEU/PRTR) (Grant CPP2021-009070)es_ES
dc.description.sponsorship“Ayudas Torres Quevedo” PTQ2019-010731, D.S.-P. by PFIS Fellowship Grant FIS PI20/00318es_ES
dc.description.sponsorshipM.E.-E. by FPU Fellowship Grant FPU21/06183 of the Spanish Ministry of Universities.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNeural tissue engineeringes_ES
dc.subjectBiomaterialses_ES
dc.subject3D printinges_ES
dc.titleComparison of Printable Biomaterials for Use in Neural Tissue Engineering: An In Vitro Characterization and In Vivo Biocompatibility Assessmentes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/PRTR/009070es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/polym16101426
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional