Mostrar el registro sencillo del ítem

dc.contributor.authorValencia Payan, Cristian
dc.contributor.authorGriol Barres, David 
dc.contributor.authorCorrales, Juan Carlos
dc.date.accessioned2024-07-22T10:57:24Z
dc.date.available2024-07-22T10:57:24Z
dc.date.issued2024-05-14
dc.identifier.citationCristian Valencia-Payan, David Griol, Juan Carlos Corrales. Logic Journal of the IGPL, 2024;, jzae047. [https://doi.org/10.1093/jigpal/jzae047]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93365
dc.description.abstractA sustainable supply chain management strategy reduces risks and meets environmental, economic and social objectives by integrating environmental and financial practices. In an ever-changing environment, supply chains have become vulnerable at many levels. In a global supply chain, carefully tracing a product is of great importance to avoid future problems. This paper describes a self-updating smart contract, which includes data validation, for tracing global supply chains using blockchains. Our proposal uses a machine learning model to detect anomalies on traceable data, which helps supply chain operators detect anomalous behavior at any point in the chain in real time. Hyperledger Caliper has been used to evaluate our proposal, and obtained a combined average throughput of 184 transactions per second and an average latency of 0.41 seconds, ensuring that our proposal does not negatively impact supply chain processes while improving supply chain management through data anomaly detection.es_ES
dc.description.abstractA sustainable supply chain management strategy reduces risks and meets environmental, economic and social objectives by integrating environmental and financial practices. In an ever-changing environment, supply chains have become vulnerable at many levels. In a global supply chain, carefully tracing a product is of great importance to avoid future problems. This paper describes a self-updating smart contract, which includes data validation, for tracing global supply chains using blockchains. Our proposal uses a machine learning model to detect anomalies on traceable data, which helps supply chain operators detect anomalous behavior at any point in the chain in real time. Hyperledger Caliper has been used to evaluate our proposal, and obtained a combined average throughput of 184 transactions per second and an average latency of 0.41 seconds, ensuring that our proposal does not negatively impact supply chain processes while improving supply chain management through data anomaly detection.es_ES
dc.description.sponsorshipTelematics Engineering Group (GIT)es_ES
dc.description.sponsorshipTelematics Engineering Group (GIT)es_ES
dc.description.sponsorshipResearch Group for Rural Development (Tull) of the University of Cauca and the Ministry of Science Technology and Innovation of Colombia (Minciencias)es_ES
dc.description.sponsorshipResearch Group for Rural Development (Tull) of the University of Cauca and the Ministry of Science Technology and Innovation of Colombia (Minciencias)es_ES
dc.description.sponsorship‘Estrategias para la valorización de los dulces tradicionales de Popayán’ (Code: 110380863995)es_ES
dc.description.sponsorship‘Estrategias para la valorización de los dulces tradicionales de Popayán’ (Code: 110380863995)es_ES
dc.description.sponsorship‘Incremento de la oferta de prototipos tecnológicos en estado pre-comercial derivados de resultados de I + D para el fortalecimiento del sector agropecuario en el departamento del Cauca’ funding by SGR (BPIN 2020000100098)es_ES
dc.description.sponsorship‘Incremento de la oferta de prototipos tecnológicos en estado pre-comercial derivados de resultados de I + D para el fortalecimiento del sector agropecuario en el departamento del Cauca’ funding by SGR (BPIN 2020000100098)es_ES
dc.description.sponsorshipSpanish R&D&i project GOMINOLA (PID2020-118112RB-C21 and PID2020-118112RB-C22) financed by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipSpanish R&D&i project GOMINOLA (PID2020-118112RB-C21 and PID2020-118112RB-C22) financed by MCIN/AEI/10.13039/501100011033es_ES
dc.language.isoenges_ES
dc.publisherOxford University Presses_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectBlockchaines_ES
dc.subjectBlockchaines_ES
dc.subjectsmart contractses_ES
dc.subjectsmart contractses_ES
dc.subjectsustainable supply chain managementes_ES
dc.subjectsustainable supply chain managementes_ES
dc.titleBlockchain self-update smart contract for supply chain traceability with data validationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1093/jigpal/jzae047
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional