Mostrar el registro sencillo del ítem

dc.contributor.authorGriol Barres, David 
dc.contributor.authorCallejas Carrión, Zoraida 
dc.date.accessioned2024-07-22T09:52:15Z
dc.date.available2024-07-22T09:52:15Z
dc.date.issued2024-05-09
dc.identifier.citationGriol, D.; Callejas, Z. Logic Journal of the IGPL, 2024. [https://doi.org/10.1093/jigpal/jzae045]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93351
dc.description.abstractConversational interfaces are becoming ubiquitous in an increasing number of application domains as Artificial Intelligence, Natural Language Processing and Machine Learning methods associated with the recognition, understanding and generation of natural language advance by leaps and bounds. However, designing the dialog model of these systems is still a very demanding task requiring a great deal of effort given the number of information sources to be considered related to the analysis of user utterances, interaction context, information repositories, etc. In this paper, we present a general framework for increasing the quality of the system responses by combining a statistical dialog management technique and a deep learning-based intention recognizer that allow replacing the system responses initially selected by the statistical dialog model with other presumably better candidates. This approach is portable to different task-oriented domains, a diversity of methodologies for dialog management and intention estimation techniques. We have evaluated our two-step proposal using two conversational systems, assessed several intention recognition methodologies and used the developed modules to dynamically select the system responses. The results of the evaluation show that the proposed framework achieves satisfactory results by making it possible to reduce the number of non-coherent dialog responses by replacing them by more coherent alternatives.es_ES
dc.description.sponsorship‘CONVERSA: Effective and efficient resources and models for transformative conversational AI in Spanish and co-official languages’ project with reference TED2021-132470B-I00es_ES
dc.description.sponsorshipNextGenerationEU/PRTRes_ES
dc.description.sponsorshipE.U.’s Horizon 2020 research and innovation programme under grant agreement no. 823907 (MENHIR project: https://menhir-project.eu)es_ES
dc.description.sponsorshipGOMINOLA project (PID2020-118112RB-C21 and PID2020-118112RB-C22, funded by MCIN/AEI/10.13039/501100011033).es_ES
dc.language.isoenges_ES
dc.publisherOxford University Presses_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectSpoken conversational systemses_ES
dc.subjectchatbots,es_ES
dc.subjectdialog managementes_ES
dc.titleCombining statistical dialog management and intent recognition for enhanced response selectiones_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ERC/H2020/823907es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1093/jigpal/jzae045
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional