Show simple item record

dc.contributor.authorBuhmann, Martin
dc.contributor.authorJäger, Janin
dc.contributor.authorJódar, Joaquín
dc.contributor.authorRodríguez González, Miguel Luis 
dc.date.accessioned2024-07-16T13:55:58Z
dc.date.available2024-07-16T13:55:58Z
dc.date.issued2024-04-03
dc.identifier.citationM. Buhmann et al. 223 (2024) 50–64. [https://doi.org/10.1016/j.matcom.2024.03.032]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93160
dc.description.abstractIn this paper, we study functional approximations where we choose the so-called radial basis function method and more specifically, quasi-interpolation. From the various available approaches to the latter, we form new quasi-Lagrange functions when the orders of the singularities of the radial function’s Fourier transforms at zero do not match the parity of the dimension of the space, and therefore new expansions and coefficients are needed to overcome this problem. We develop explicit constructions of infinite Fourier expansions that provide these coefficients and make an extensive comparison of the approximation qualities and – with a particular focus – polynomial reproduction and uniform approximation order of the various formulae. One of the interesting observations concerns the link between algebraic conditions of expansion coefficients and analytic properties of localness and convergence.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRadial basis functionses_ES
dc.subjectQuasi-interpolationes_ES
dc.subjectApproximation orderses_ES
dc.titleNew methods for quasi-interpolation approximations: Resolution of odd-degree singularitieses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.matcom.2024.03.032
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional